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a b s t r a c t

Recent research has shown that transfer entropy can be effectively employed as a

feature for nonlinearity detection and linear damage identification. However, computa-

tion of transfer entropy requires the estimation of non-parametric one-, two-, and three-

dimensional probability density functions. Therefore, small random perturbations

caused by noise could lead to large variances in transfer entropy estimates. In this paper,

we evaluate the effect of input and output noise on estimation of transfer entropy, and

how noise, in turn, affects the capability of transfer entropy as a damage detector in a

structural health monitoring (SHM) application. A damage index from the transfer

entropy is computed from the response of a simulated multi-degree-of-freedom

oscillator subject to linear and nonlinear stiffness changes in the presence of various

noise influences. Damage indices are also evaluated for an experimental frame structure.

Based on the computational study, we find that input noise lessens the sensitivity of the

damage feature by diminishing the ability of the non-parametric density estimators to

produce low variance transfer entropy estimations. Despite this reduced capability, an

input that has no deterministic component can still detect a 25% stiffness loss in the

computational example employed. Output noise has a greater impact on the feature’s

ability to accurately estimate the transfer entropy, such that a signal-to-noise threshold

of approximately 30 dB leads to a greatly diminished ability to detect damage. Despite

these noise effects, all damage cases tested on an experimental frame structure were

detectable using the transfer entropy damage index.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Structural health monitoring (SHM) is a rapidly growing research field that attempts to characterize a structural
condition in real-time using sensor measurements and data analysis techniques. Many SHM-related approaches rely on
dynamical measurements of an externally excited structure’s response [1]. The response data are then mined for features
that indirectly indicate the presence, location, and/or extent of damage to the structure, commonly by comparing a baseline
system condition to the current, possibly damaged, condition. The computed features often focus on examining linear
relationships within the data, whereby system inputs and outputs are recorded and fitted to a linear model in the time or
frequency domains. These linear models are based on the assumption that the system can be decomposed into its
eigenstate (normal modes and frequencies). Frequency-domain-based linear approaches include the use of operating
shapes (‘‘peak picking’’), rational polynomial curve fitting [2], and nonlinear least-squares fitting [3]. The Eigensystem
Realization Algorithm [4] and Complex Exponential Algorithm [5] are two of several linear time-domain methods [6,7].
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However, the manifestation of damage is often characterized by the presence of nonlinearity in a previously (primarily)
linear structure. Rattling in a bolted connection or opening and closing of a crack are two such examples. Therefore, it is
instructive to be able to include nonlinear components in a system identification-based feature algorithm. Research has
incorporated higher-order frequency response functions to account for weak nonlinearities in systems [8,9]. However, this
method still assumes a specific model of the correlations present within the system.

A more general system identification approach can be made by characterizing the coupling within a system using
information theory-based algorithms. Information theory was originally established as a means of quantifying the
fundamental limits required for compressing and communicating data reliably [10]. Measures of information include the
information entropy, mutual information, and Kullback–Leibler divergence [11]. Nichols et al. [12,13] has adapted one such
measure, the transfer entropy [14], for SHM-related applications and nonlinearity detection. Transfer entropy effectively
quantifies the amount of information transfer between two measurements by utilizing statistical conditional relationships
in the data. Past research [12,13] has included a time lag to examine the interrelationships between processes at various
time scales. More recently, Overbey and Todd [15] proposed a modified version of the transfer entropy where specific time
lag choices can improve sensitivity. However, this work was conducted on a model-based estimation of the transfer
entropy, focusing purely on linear systems excited by random Gaussian processes.

However, if there is nonlinearity in the system, or if the system is excited by other means, a full estimation approach is
required [13]. Because transfer entropy inherently compares conditional statistical relationships, its computation from a
time series requires estimation of one-, two-, and three-dimensional probability density functions (pdfs). These estimates
can be quite computationally intensive, requiring either a large number of points or low noise variance in order to get
accurate and repeatable measures of the transfer entropy. Hence, it is important to establish what the limitations of this
feature are in terms of estimation and how different noise influences affect these limitations.

This work resolves these limits using both empirical and analytical means. We evaluate the influence of noise
on transfer entropy estimates for a dynamic structural model. A generalized, non-parametric estimation is employed
here for the first time on the modified transfer entropy introduced by Overbey and Todd [15]. Moreover, we thoroughly
analyze the effects of noise on these estimations, and in turn, the capability of transfer entropy as a damage detection
feature.

First, we look at the case of a linear structural system subject to both linear and nonlinear stiffness changes to represent
damage. The effects of both input and output noise on estimation and damage detection capability are examined. We
consider input noise as any variability that is introduced within the active forcing that is applied to a structure. Output noise
is any random component introduced in the response of the structure, such that it can be modeled by additive noise to the
measurement(s). After the study of these noise-induced effects, an experimental frame structure is employed to validate
the transfer entropy estimation procedure in a real-life application. All of these systems are analyzed within the context of
an SHM application, where transfer entropy is employed as the damage detection feature.

2. Transfer entropy

Transfer entropy was originally formulated as a method to explicitly account for underlying dynamics in systems where
information can flow between processes [14]. We can begin by analyzing processes from the perspective of their
relationship to a traditional Markov series. Defining a kth-order Markov process x such that its dynamics are conditional
only on previous values of x up to a time lag k, the transition probability of said process can be written as
p(x(n+1)jx(n)(k)) ¼ p(x(n+1)jx(n),x(n�1),y, x(n�k+1)) ¼ p(x(n+1)jx(n)(k)) ¼ p(x(1)jx(k)), where n is dropped in the last
expression for notational convenience. However, if x is also influenced by another process y, we can introduce a second
transition probability such that x relies on the previous time histories of x and y: p(x(1)jx(k),y(l)), where y(l)

¼ y(n),y(n�1),
y, y(n�l+1). From dynamical interdependence, the transfer entropy can be expressed as

Ty!xðxð1Þjx
ðkÞ; yðlÞÞ ¼

Z Z Z
pðxð1ÞjxðkÞ; yðlÞÞlog2

pðxð1ÞjxðkÞ; yðlÞÞ

pðxð1Þ xðkÞ
�� Þ

 !
dxð1ÞdxðkÞ dyðlÞ. (1)

In essence, transfer entropy quantifies the influence of y on the dynamics of x, independent of the influence of x on itself.
A purely data-based formulation of the transfer entropy would require estimation of multi-dimensional probability
densities, where the dimension is determined by the assumed Markov orders k and l. Therefore, it is instructive to reduce
the order of the processes to k ¼ l ¼ 1 for computational simplicity, and introduce a time delay to assess the effects of
pertinent time scales on the system dynamics. Previous research [15] has introduced a lag t in y such that the transfer
entropy equation can be written as

Ty!xðxjxðtÞ; yðtÞÞ ¼
Z Z Z

pðxjxðtÞ; yðtÞÞlog2
pðxjxðtÞ; yðtÞÞ

pðxjxðtÞÞ

� �
dx dxðtÞdyðtÞ. (2)

where x(1) was replaced with x for notational simplicity.
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