Web Semantics: Science, Services and Agents on the World Wide Web 19 (2013) 42-58

Web Semantics: Science, Services and Agents

journal homepage: www.elsevier.com/locate/websem

Contents lists available at SciVerse ScienceDirect

L e

_Semantics

on the World Wide Web

WORLD WIDE WEB

Ontology evolution without tears

Haridimos Kondylakis *, Dimitris Plexousakis
Information Systems Laboratory, FORTH-ICS, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece

ARTICLE INFO

Article history:

Received 29 September 2011
Received in revised form

7 November 2012

Accepted 13 January 2013
Available online 23 January 2013

Keywords:
Ontology evolution
Data integration
Query rewriting

ABSTRACT

The evolution of ontologies is an undisputed necessity in ontology-based data integration. Yet, few
research efforts have focused on addressing the need to reflect the evolution of ontologies used as global
schemata onto the underlying data integration systems. In most of these approaches, when ontologies
change their relations with the data sources, i.e., the mappings, are recreated manually, a process which
is known to be error-prone and time-consuming. In this paper, we provide a solution that allows query
answering in data integration systems under evolving ontologies without mapping redefinition. This is
achieved by rewriting queries among ontology versions and then forwarding them to the underlying data
integration systems to be answered. To this purpose, initially, we automatically detect and describe the
changes among ontology versions using a high level language of changes. Those changes are interpreted as
sound global-as-view (GAV) mappings, and they are used in order to produce equivalent rewritings among
ontology versions. Whenever equivalent rewritings cannot be produced we a) guide query redefinition
or b) provide the best “over-approximations”, i.e., the minimally-containing and minimally-generalized
rewritings. We prove that our approach imposes only a small overhead over traditional query rewriting
algorithms and it is modular and scalable. Finally, we show that it can greatly reduce human effort spent

since continuous mapping redefinition is no longer necessary.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The development of new scientific techniques and the emer-
gence of new high throughput tools have led to a new information
revolution. The nature and the amount of information now avail-
able open directions of research that were once in the realm of sci-
ence fiction. During this information revolution the data gathering
capabilities have greatly surpassed the data analysis techniques,
making the task to fully analyze the data at the speed at which it is
collected a challenge. The amount, diversity, and heterogeneity of
that information have led to the adoption of data integration sys-
tems in order to manage it and further process it. However, the
integration of these disparate data sources raises several semantic
heterogeneity problems.

By accepting an ontology as a point of common reference,
naming conflicts are eliminated and semantic conflicts are
reduced. Ontologies are used to identify and resolve heterogeneity
problems, usually at schema level, as a means for establishing
an explicit formal vocabulary to share. During the past years,
ontologies have been used as global schemata in database
integration [1], obtaining promising results, for example in
the fields of biomedicine and bioinformatics [2,3]. When using

* Corresponding author. Tel.: +30 2810 391499; fax: +30 2810 391428.
E-mail addresses: kondylak@ics.forth.gr, kondylak@gmail.com (H. Kondylakis).

1570-8268/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.websem.2013.01.001

ontologies to integrate data, one is required to produce mappings,
to link similar concepts or relationships from the ontology/ies
to the sources by way of an equivalence. This is the mapping
definition process [4] and the output of this task is the mapping,
i.e., a collection of mappings rules. In practice, this process is done
manually with the help of graphical user interfaces and it is a time-
consuming, labor-intensive and error-prone activity [5].

Despite the great amount of work done in ontology-based
data integration, an important problem that most of the systems
tend to ignore is that ontologies are living artifacts and subject
to change [4]. Due to the rapid development of research,
ontologies are frequently changed to depict the new knowledge
that is acquired. The problem that occurs is the following: when
ontologies change, the mappings may become invalid and should
somehow be updated or adapted.

In this paper, we address the problem of data integration for
evolving RDF/S ontologies that are used as global schemata. We
address the problem for a core subset of SPARQL queries that
correspond to a union of conjunctive queries. We argue that
ontology change should be considered when designing ontology-
based data integration systems. A typical solution would be to
regenerate the mappings and then regenerate the dependent
artifacts each time the ontology evolves. However, as this evolution
might happen too often, the overhead of redefining the mappings
each time is significant. The approach, to recreate mappings from
scratch each time the ontology evolves, is widely recognized to be
problematic [5-7], and instead, previously captured information

http://dx.doi.org/10.1016/j.websem.2013.01.001
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
mailto:kondylak@ics.forth.gr
mailto:kondylak@gmail.com
http://dx.doi.org/10.1016/j.websem.2013.01.001

H. Kondylakis, D. Plexousakis / Web Semantics: Science, Services and Agents on the World Wide Web 19 (2013) 42-58 43

should be reused. However, all current approaches that try to
do that suffer from several drawbacks and are inefficient [8,9]
in handling ontology evolution in a state of the art ontology-
based data integration system. The lack of an ideal approach
leads us to propose a new mechanism that builds on the latest
theoretical advances on the areas of ontology change [10] and
query rewriting [11,12] and incorporates and handles ontology
evolution efficiently and effectively. More specifically:

e We present the architecture of a data integration system,
named Evolving Data Integration system, that allows the
evolution of the ontology used as global schema. Query
answering in our system proceeds in two phases: (a) query
rewriting from the latest to the earlier ontology versions and
(b) query rewriting from one ontology version to the local
schemata. Since query rewriting to the local schemata has been
extensively studied [11-13], we focus on a layer above and deal
only with the query rewriting between ontology versions.

e The query processing in the first step consists of: (i) query
expansion that considers constraints coming from the ontology,
and (ii) valid query rewriting that uses the changes between two
ontology versions to produce rewritings among them.

e In order to identify the changes between the ontology versions
we adopt a high-level language of changes. We show that
the proposed language possesses salient properties such as
uniqueness, inversibility and composability. Uniqueness is a pre-
requisite for the solution described in this paper, where the
other two properties are nice to have, but they are not necessary
for our solution. The sequence of changes between the latest
and the other ontology versions is produced automatically at
setup time and then those changes are translated into logical
GAV mappings. This translation enables query rewriting by
unfolding. Moreover, the inversibility is exploited to rewrite
queries from past ontology versions to the current, and vice
versa, and composability to avoid the reconstruction of all
sequences of changes among the latest and all previous
ontology versions.

e Despite the fact that query rewriting always terminates, the
rewritten queries issued, using past ontology versions, might
fail. We show that this problem is not inhibiting in our
algorithms but a consequence of information unavailability
among ontology versions. To tackle this problem, we propose
two solutions: (a) either to provide best “over-approximations”
by means of minimally-containing and minimally-generalized
queries, or (b) to provide insights for the failure by means of
affecting change operations, thus driving query redefinition.

e We show that our method is sound and complete and
does not impose a significant overhead. Finally, we present
our experimental analysis using two real-world ontologies.
Experiments performed show the feasibility of our approach
and the considerable advantages gained.

Such a mechanism, that provides rewritings among data
integration systems that use different ontology versions as global
schemata, is flexible, modular and scalable. It can be used on top
of any data integration system—independently of the family of
the mappings that each specific data integration system uses to
define mappings between one ontology version and the local
schemata (GAV, LAV, GLAV [13]). New mappings or ontology
versions can be easily and independently introduced without
affecting other mappings or other ontology versions. Our engine
takes the responsibility of assembling a coherent view of the world
out of each specific setting.

This paper is an extended and revised version of a previously
published conference paper [14] whereas the implemented system
was demonstrated in [15]. However, only the basic ideas were
described in [1], without a detailed analysis of the theoretical

) :subClass of —— :property domain/range

«_ full name

—
Person

street ssn

gender has_cont_point

oo /Gy i

Ontology Version 1 Ontology Version 2

B o B

Fig. 1. The motivating example of an evolving ontology.

foundation of the approach. This manuscript adds to the previously
published results, the related work, the formal properties of
the language of changes used to capture ontology evolution
and the specific semantics of the implemented architecture. In
addition, the new algorithms that were created are presented, their
correctness is proved and their complexity is analyzed. Finally,
an evaluation of the system is presented for the first time using
real and synthetic set of queries, and a discussion is added to the
conclusion of this paper.

The rest of the paper is organized as follows: Section 2
introduces the problem by an example and presents related work.
Section 3 presents the architecture of our system and describes
its components. Section 4 describes the semantics of such a
system and Section 5 elaborates on the aforementioned query
rewriting among ontology versions. Finally, Section 6 presents our
experimental analysis and Section 7 provides a summary and an
outlook for further research.

2. Motivating example and related work

Consider the example RDF/S ontology shown on the left of
Fig. 1. This ontology is used as a point of common reference,
describing persons and their contact points (“Cont.Point”). We also
have two relational databases DB1 and DB2 mapped to that version
of the ontology. Assume now that the ontology designer decides to
move the domain of the “has_cont_point” property from the class
“Actor” to the class “Person”, and to delete the property “gender”.
Moreover, the “street” and the “city” properties are merged to
the “address” property. Merging is a concatenation with some
special character like comma between the words. Furthermore, the
“name” property is renamed to “fullname” as shown on the right of
Fig. 1. Then, one new database DB3 is mapped to the new version
of the ontology leading to two data integration systems that work
independently. In such a setting we would like to issue queries
formulated using any ontology version available. Moreover, we
would like to retrieve answers from all underlying databases.

Several approaches have been proposed so far to tackle similar
problems. For example, for XML databases there have been several
approaches that try to preserve mapping information under
changes [16] or propose guidelines for XML schema evolution
in order to maintain the mapping information [17]. Moreover,
augmented schemata were introduced in [18] to enable query
answering over multiple schemata in a data warehouse, whereas
other approaches change the underlying database systems to store
versioning and temporal information such as [19-24]. However,
our system differs from all the above in terms of both goals and
techniques.

Other works focus on the problem of updating RDF/S [25-27]
or OWL-DL [28] knowledge bases. These works mostly try to
determine the effects and side-effects of elementary or complex
change operations and to characterize the different class of updates
with a well-defined semantics. In our work, however, we do not
deal with the effects of the change operations on the ontology but

Download English Version:

https://daneshyari.com/en/article/561998

Download Persian Version:

https://daneshyari.com/article/561998

Daneshyari.com

https://daneshyari.com/en/article/561998
https://daneshyari.com/article/561998
https://daneshyari.com

