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Algorithms for simultaneous sparse approximation.
Part I: Greedy pursuit$
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Abstract

A simultaneous sparse approximation problem requests a good approximation of several input signals at once using

different linear combinations of the same elementary signals. At the same time, the problem balances the error in

approximation against the total number of elementary signals that participate. These elementary signals typically model

coherent structures in the input signals, and they are chosen from a large, linearly dependent collection.

The first part of this paper proposes a greedy pursuit algorithm, called simultaneous orthogonal matching pursuit

(S-OMP), for simultaneous sparse approximation. Then it presents some numerical experiments that demonstrate how a

sparse model for the input signals can be identified more reliably given several input signals. Afterward, the paper proves

that the S-OMP algorithm can compute provably good solutions to several simultaneous sparse approximation problems.

The second part of the paper develops another algorithmic approach called convex relaxation, and it provides

theoretical results on the performance of convex relaxation for simultaneous sparse approximation.
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1. Introduction

In recent years, the signal processing community
has lavished attention on the class of simple sparse

approximation problems. These problems have
two facets:

(1) A signal vector is approximated using a linear
combination of elementary signals, which are
drawn from a fixed collection. In modern
problems, this collection is often linearly
dependent and large.

(2) The problem seeks a compromise between the
approximation error (usually measured with
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Euclidean distance) and the number of ele-
mentary signals that participate in the linear
combination. The goal is to identify a good
approximation involving few elementary sig-
nals—a sparse approximation.

Simple sparse approximation problems originally
arose in the study of linear regression. In this
setting, we wish to approximate a data vector
using a linear combination of regressors, but
we must control the number of regressors to
avoid fitting noise in the data. Statisticians
developed many of the numerical algorithms that
are used for solving simple sparse approximation
problems [1].

One striking generalization of simple sparse
approximation has garnered little attention in
the literature. Consider the following scenario.
Suppose that we have several observations
of a signal that has a sparse representation.
Each view is contaminated with noise, which
need not be statistically independent. It seems
clear that we should be able to use the additional
information to produce a superior estimate
of the underlying signal. This intuition sug-
gests that we study simultaneous sparse approx-

imation:

Given several input signals, approximate all
these signals at once using different linear
combinations of the same elementary signals,
while balancing the error in approximating the
data against the total number of elementary
signals that are used.

Simultaneous sparse approximation problems
arise in several specific domains. For example,
Rao and his colleagues have considered applica-
tions to magnetoencephalography [2] and to the
equalization of sparse communications channels
[3]. Gribonval has developed applications to
blind source separation [4]. Malioutov et al. [5,6]
have shown that source localization using a
linear array of sensors can be posed as a
simultaneous sparse approximation problem
[5,6]. It is easy to imagine many other applications
in statistics, wireless communications, and ma-
chine learning.

1.1. Contributions

This work examines simultaneous sparse ap-
proximation from the practical and the theoretical
point of view.
In the first part of the paper, we propose a

greedy algorithm that generalizes the familiar
orthogonal matching pursuit procedure, which
was developed for simple sparse approximation
[7,8]. At each iteration, a greedy pursuit makes the
best local improvement to the current approxima-
tions in hope of obtaining a good overall solution.
The same algorithm has been developed indepen-
dently in [9,10].
Then, we summarize some numerical experi-

ments using this greedy algorithm. These experi-
ments confirm our intuition that having multiple
observations of a sparse signal can improve our
ability to identify the underlying sparse represen-
tation. They also give a measure of how the
algorithm’s performance depends on the number
of input signals, the level of sparsity, and the
signal-to-noise ratio (SNR).
Afterward, we prove that the greedy algorithm

can calculate good solutions to simultaneous
sparse approximation problems. Moreover, if we
have some basic information about the signals,
this information can be used to enhance the
performance of the algorithm. Our proofs require
that the collection of elementary signals possess a
geometric property called incoherence. Roughly,
incoherence means the elementary signals are
weakly correlated with each other. The theoretical
arguments build on work in [11–13].
In the second part of the paper, we develop a

more sophisticated numerical method for simulta-
neous sparse approximation based on convex
relaxation. Convex relaxation replaces the difficult
simultaneous sparse approximation problem by a
convex optimization problem, which can be solved
in polynomial time with standard mathematical
programming software. Using a variation of the
argument in [14], we prove that convex program-
ming yields good solutions to simultaneous sparse
approximation problems, even in the presence of
noise.
Our analysis of these two algorithmic methods

for simultaneous sparse approximation yields the
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