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Abstract

Structural health monitoring (SHM) is the subject of a great deal of ongoing research leading to the capability that

reliable remote monitoring of civil infrastructure would allow a shift from schedule-based to condition-based maintenance

strategies. The first stage in such a system would be the indication of an extraordinary change in the structure’s

behaviour.

A statistical classification algorithm is presented here which is based on analysis of a structure’s response in the time

domain. The time-series responses are fitted with Autoregressive Moving Average (ARMA) models and the ARMA

coefficients are fed to the classifier. The classifier is capable of learning in an unsupervised manner and of forming new

classes when the structural response exhibits change.

The approach is demonstrated with experimental data from the IASC–ASCE benchmark four-storey frame structure,

the Z24 bridge and the Malaysia–Singapore Second Link bridge. The classifier is found to be capable of identifying

structural change in all cases and of forming distinct classes corresponding to different structural states in most cases.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The last two decades have seen a great deal of research and publication in the field of structural health
monitoring (SHM) and there has been a proliferation of SHM paradigms put forward [1–3], with long-term
monitoring systems implemented on bridges in Europe, the United States and Asia [4–6]. This has provided a
great deal of practical experience and knowledge and helped SHM reach a greater level of maturity.

Despite this level of research, a robust method of indicating an adverse condition of a structure in service
has yet to be demonstrated and widely implemented. This level of SHM is generally referred to as level 1. The
classification algorithm proposed in this paper is primarily aimed at this level but can also provide a heuristic
guide to the condition of the structure depending on the level of prior knowledge.
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Modelling of time histories is common in many disciplines and has been used to study various phenomena
from sunspot activities to stock market indexes. The literature on the subject is extensive. A classic treatment is
provided by Box et al. [7] while a more system analysis focused approach, and perhaps a more directly useful
primer to the vibration engineer, is given by Pandit and Wu [8].

It is possible to build linear stochastic models of structural time response histories using Autoregressive
Moving Average (ARMA) models if it is supposed that the structure is randomly excited. An ARMAmodel of
order (p, q) is defined

fðBÞzt ¼ yðBÞat, (1)

where zt is the time history response of the structure. at is the series of Gaussian distributed random shocks
exciting the structure. f(B) is the AR function of order p and y(B) is the MA function of order q defined,
respectively, as

fðBÞ ¼ 1� f1B� � � � � fpBp, (2)

yðBÞ ¼ 1� y1B� � � � � yqBq, (3)

B is the backward shift operator: Bmzt ¼ zt�m.
The AR parameters are directly related to the system poles, li, i ¼ 1, 2,y, n through the following equation

[8]. For the case of dynamic structural response involving a number of vibration modes, n is twice the number
of system modes excited and each mode is represented by a complex conjugated pair of poles

fl ¼ ð�1Þ
lþ1

Xn

i1;i2;...il¼1; i1oi2o���oil

li1li2 . . . lil
. (4)

Each pair of poles is related to the natural frequency, oj, and damping ratio, zj, of a mode through the
following equation, where i ¼ 2j:

li; li�1 ¼ e
Dð�zoj�oj

ffiffiffiffiffiffiffiffi
z2j �1

p
Þ
, (5)

where li�1 is the complex conjugate of li. D is the sampling time interval.
Thus, the natural frequency and damping ratio may be determined by examining only the AR parameters.

This has led to the moving-average parameters generally receiving less attention in the system identification
literature despite their importance for modelling. For example, Fig. 1 shows the power spectral densities of
single-degree-of-freedom (SDOF) systems modelled as ARMA(2, 1) systems. The analytical link between an
SDOF and an ARMA(2, 1) model is expounded in Appendix A. In Fig. 1, the AR parameters are held
constant while the MA parameter is varied over a range of 0.5–2.5. The greater power in the signal with the
MA parameter equal to 0.5 compared with 1.0 is not an error but rather results from the non-linear
relationship between the MA parameter and the power in the mode. It should be noted that changing the MA
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Fig. 1. Auto-power spectral densities of SDOF systems modelled with varying values of the MA parameter while maintaining the AR

parameter values.
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