
WebPIE: A Web-scale Parallel Inference Engine using MapReduce

Jacopo Urbani ⇑, Spyros Kotoulas, Jason Maassen, Frank Van Harmelen, Henri Bal
Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands

a r t i c l e i n f o

Article history:
Available online 22 July 2011

Keywords:
Semantic Web
MapReduce
High performance
Distributed computing
Reasoning

a b s t r a c t

The large amount of Semantic Web data and its fast growth pose a significant computational challenge in
performing efficient and scalable reasoning. On a large scale, the resources of single machines are no
longer sufficient and we are required to distribute the process to improve performance.

In this article, we propose a distributed technique to perform materialization under the RDFS and OWL
ter Horst semantics using the MapReduce programming model. We will show that a straightforward
implementation is not efficient and does not scale. Our technique addresses the challenge of distributed
reasoning through a set of algorithms which, combined, significantly increase performance. We have
implemented WebPIE (Web-scale Inference Engine) and we demonstrate its performance on a cluster
of up to 64 nodes. We have evaluated our system using very large real-world datasets (Bio2RDF, LLD,
LDSR) and the LUBM synthetic benchmark, scaling up to 100 billion triples. Results show that our imple-
mentation scales linearly and vastly outperforms current systems in terms of maximum data size and
inference speed.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Scalable reasoning is a crucial problem in the Semantic Web. At
the beginning of 2009, the Semantic Web was estimated to contain
4.4 billion triples.1 One year later, the size of the Web had tripled to
13 billion triples and the current trend indicates that this growth
rate has not changed.

With such growth, reasoning on a Web scale becomes increas-
ingly challenging, due to the large volume of data involved and
to the complexity of the task. Most current reasoners are designed
with a centralized architecture where the execution is carried out
by a single machine. When the input size is on the order of billions
of statements, the machine’s hardware becomes the bottleneck.
This is a limiting factor for performance and scalability.

A distributed approach to reasoning is potentially more scalable
because its performance can be improved by adding more compu-
tational nodes. However, distributed reasoning is significantly
more challenging because it requires developing protocols and
algorithms to efficiently share both data and computation. The
challenges concerning distributed reasoning can be grouped into
three main classes:

� Large data transfers: Reasoning is a data intensive problem and if
the data is spread across many nodes, the communication can
easily saturate the network or the disk bandwidth. Therefore,
data transfers should be minimized.
� Load balancing. Load balancing is a very common problem in dis-

tributed environments. In the Semantic Web, it is even worse
because data has a high skew, with some statements and terms
being used much more frequently than others. Therefore, the
nodes in which popular information is stored have to work
much harder, creating a performance bottleneck.
� Reasoning complexity. Reasoning can be performed using a logic

that has a worst-case complexity which ranges from linear to
exponential. The time it eventually takes to perform a reasoning
task depends on both the considered logic and on the degree the
input data exploits this logic. On a large scale, we need to find
the best trade-off between logic complexity and performance,
developing the best execution strategy for realistic datasets.

Reasoning is a task that can be performed either at query time
(backward reasoning) or beforehand (forward reasoning or material-
ization). In some logics, it can be expressed as a set of if-then rules
that must be applied until no further conclusions can be derived.

In this paper, we choose to follow a distributed approach to per-
form rule-based forward reasoning based on the MapReduce pro-
gramming model.

The choice of MapReduce as programming model is motivated by
the fact that MapReduce is designed to limit data exchange and
alleviate load balancing problems by dynamically scheduling jobs

1570-8268/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.websem.2011.05.004

⇑ Corresponding author.
E-mail addresses: jacopo@cs.vu.nl (J. Urbani), kot@cs.vu.nl (S. Kotoulas),

jason@cs.vu.nl (J. Maassen), Frank.van.Harmelen@cs.vu.nl (F. Van Harmelen),
bal@cs.vu.nl (H. Bal).

1 http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/
Statistics.

Web Semantics: Science, Services and Agents on the World Wide Web 10 (2012) 59–75

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents
on the World Wide Web

journal homepage: ht tp : / /www.elsevier .com/ locate/websem

http://dx.doi.org/10.1016/j.websem.2011.05.004
mailto:jacopo@cs.vu.nl
mailto:kot@cs.vu.nl
mailto:jason@cs.vu.nl
mailto:Frank.van.Harmelen@cs.vu.nl
mailto:bal@cs.vu.nl
http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics
http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics
http://dx.doi.org/10.1016/j.websem.2011.05.004
http://www.sciencedirect.com/science/journal/15708268
http://http://www.elsevier.com/locate/websem


on the available nodes. However, simply encoding the rules using
MapReduce is not enough in terms of performance, and research is
necessary to come up with efficient distributed algorithms.

There are several rulesets that apply reasoning with different
levels of complexity. First, we focus on the RDFS [14] semantics,
which has a ruleset with relatively low complexity. We propose
three optimizations to address a set of challenges: ordering the
rules to avoid fixpoint iteration, distributing the schema to im-
prove load balancing and grouping the input according to the pos-
sible output to avoid duplicate derivations.

Second, in order to find the best tradeoff between complexity
and performance, we extend our technique to deal with the more
complex rules of the OWL ter Horst fragment [18]. This fragment
poses some additional challenges: performing joins between
multiple instance triples and performing multiple joins per rule.
We overcome these challenges by introducing three novel
techniques to deal with a set of problematic rules, namely the ones
concerning (owl:sameAs), (owl:transitiveProperty),
(owl:someValuesFrom) and (owl:allValuesFrom).

To evaluate our methods, we have implemented a prototype
called WebPIE (Web-scale Parallel Inference Engine) using the Ha-
doop framework. We have deployed WebPIE on a 64-node cluster
as well as on the Amazon cloud infrastructure and we have per-
formed experiments using both real-world and synthetic bench-
mark data. The obtained results show that our approach can
scale to a very large size, outperforming all published approaches,
both in terms of throughput and input size by at least an order of
magnitude. It is the only approach that demonstrates complex
Semantic Web reasoning for an input of 1011 triples.

This work is an extension of the work on RDFS reasoning pub-
lished in [31], on OWL ter Horst reasoning published in [30] and
our submission to the SCALE Challenge 2010 [29], which won the
first prize. Compared to the previously published work, this paper
contains a more detailed description of the algorithms, additional
optimizations that further increase performance, support for incre-
mental reasoning and a more thorough performance evaluation on
more recent hardware.

This paper is organized as follows: first, in Section 2, we give a
brief introduction to the MapReduce programming model. This
introduction is necessary to provide the reader with basic knowl-
edge to understand the rest of the paper.

Next, in Section 3, we focus on RDFS reasoning and we present a
series of techniques to implement the RDFS ruleset using MapRe-
duce. Next, in Section 4 we extend these technique to support
the OWL ter Horst fragment. In Section 5 we explain how these
algorithms can be further extended to handle incremental updates.
In Section 6 we provide the evaluation of WebPIE. Finally, the re-
lated work and the conclusions are reported in Sections 7 and 8
respectively.

The techniques are explained at a high level without going
into the details of our MapReduce implementation. In Appendix
A, we describe the implementation of WebPIE at a lower level
and we provide the pseudocode of the most relevant reasoning
algorithms.

2. The MapReduce programming model

MapReduce is a framework for parallel and distributed process-
ing of batch jobs [11]. Each job consists of two phases: a map and a
reduce. The mapping phase partitions the input data by associating
each element with a key. The reduce phase processes each parti-
tion independently. All data is processed as a set of key/value pairs:
the map function processes a key/value pair and produces a set of
new key/value pairs; the reduce merges all intermediate values
with the same key and outputs a new set of key/value pairs.

2.1. A simple MapReduce example: term count

We illustrate the use of MapReduce through an example appli-
cation that counts the occurrences of each term in a collection of
triples. As shown in Algorithm 1, the map function partitions these
triples based on each term. Thus, it emits intermediate key/value
pairs, using the triple terms (s,p,o) as keys and blank, irrelevant,
value. The framework will group all intermediate pairs with the
same key, and invoke the reduce function with the corresponding
list of values, summing the number of values into an aggregate
term count (one value was emitted for each term occurrence).

Algorithm 1. Counting term occurrences in RDF NTriples files

map(key, value):
// key: line number
// value: triple
emit(value.subject, blank); // emit a blank value, since
emit(value.predicate, blank); // only number of terms
matters
emit(value.object, blank);

reduce(key, iterator values):
// key: triple term (URI or literal)
// values: list of irrelevant values for each term
int count=0;
for (value in values)
count++; // count number of values, equaling occurrences
emit(key, count);

This job could be executed as shown in Fig. 1. The input data is
split in several blocks. Each computation node operates on one or
more blocks, and performs the map function on that block. All
intermediate values with the same key are sent to one node, where
the reduce is applied.

2.2. Characteristics of MapReduce

This simple example illustrates some important elements of the
MapReduce programming model:

� since the map operates on single pieces of data without depen-
dencies, partitions can be created arbitrarily and can be sched-
uled in parallel across many nodes. In this example, the input
triples can be split across nodes arbitrarily, since the computa-
tions on these triples (emitting the key/value pairs), are inde-
pendent of each other;
� the reduce operates on an iterator of values because the set of

values is typically far too large to fit in memory. This means that
the reducer can only partially use correlations between these
items while processing: it receives them as a stream instead
of a set. In this example, operating on the stream is trivial, since
the reducer simply increments the counter for each item;

Fig. 1. MapReduce processing.

60 J. Urbani et al. / Web Semantics: Science, Services and Agents on the World Wide Web 10 (2012) 59–75



Download English Version:

https://daneshyari.com/en/article/562215

Download Persian Version:

https://daneshyari.com/article/562215

Daneshyari.com

https://daneshyari.com/en/article/562215
https://daneshyari.com/article/562215
https://daneshyari.com

