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a b s t r a c t

In this paper, we propose a new structured measurement matrix for practical compressed
sensing based on block weighing matrix, called partial Random Block Weighing Matrix
(pRBWM). The proposed pRBWM is universal with a variety of sparse signals and provides
high reconstruction performance simultaneously. In addition, with the sparse and circu-
lant block structure, these new measurement matrices feature low-memory requirement
and low computational complexity in reconstruction. Moreover, it can be more easily
implemented in hardware thanks to its sample elements and the application of Chaos-
based permutation operator in construction of pRBWM. Simulation results demonstrate
that the proposed pRBWM performs comparably to, or even better than completely
random matrices and many other structured matrices. And the proposed pRBWM forms a
high balance between reconstruction performance,storage and computational complexity
and hardware implementation.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

According to the well-known Nyquist sampling theo-
rem in theory of digital signal processing, the sampling
rate must be no less than twice the highest frequency of
signal which always makes a high pressure on sampling
and storage of practical sampling system. Nowadays,
compressed sensing (CS) [1,2] has brought a revolution
because of the breakthrough of low speed sampling of
digital signal, thus attracted a lot of interests.

Consider a length-N signal f and sample it by a linear
system, the data acquisition process in CS is described as:

y¼Φf ; ð1Þ

where Φ is a M � N M⪡Nð Þ measurement matrix, y repre-
sents a sampled vector with length M. The theory of CS
implies that f can be faithfully recovered from only few
measurements if signal f is K-sparse (or compressible) and
Φ satisfies some efficient conditions for exact reconstruc-
tion although the fact that the dimension of y is far below
the dimension of original signal f . Usually, natural signal is
always not sparse itself but can be sparsified by some
orthogonal transformations. Suppose that f can be well
approximated by K KoMð Þ non-zero coherences on a
transform basis, i.e.

f ¼ Ψθ; ð2Þ

where ΨARN�N is called as sparse basis matrix, θARN is
the transform coefficient vector whose energy is mainly
concentrated on at most K non-zero entries. And then the
more general model of CS becomes

y¼Φf ¼ΦΨθ¼Θθ; ð3Þ

where ΦΨ ¼Θ is called sensing matrix to distinguish Φ. To
faithfully reconstruct f (or θ) from (3), sensing matrix
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ΦΨ ¼Θ must satisfy some strict criterions of which the
most famous is the restricted isometry property (RIP) [3].

Definition 1. (RIP): An M � N matrix Θ is said to satisfy
the RIP with parameters K; δð Þ δA 0;1ð Þð Þ if
1�δð Þ θk k22r Θθk k22r 1þδð Þ θk k22; for all θAΓ ; ð4Þ
where Γ represents the set of all length-N vectors with K
non-zero coefficients.

The RIP criterion is a sufficient condition for CS exact
reconstruction, however it is hard to verify the RIP of a
matrix, and thus the incoherence between the measure-
ment matrix and sparse basis matrix has been proposed to
guide the construction of CS measurement matrix in
practice. The incoherence between the two matrices can
be mathematically quantified by the mutual coherence
coefficient [4]. The mutual coherence of an N � N ortho-
normal matrix Φ and another N � N orthonormal matrix Ψ
is defined as the largest absolute magnitude among the
entries in Θ¼ΦΨ , i.e.

μ Φ;Ψð Þ ¼ max
1r i;jrN

ϕT
i ;ψ j

� ��� ��; ð5Þ

where ϕi are rows of Φ and ψ j are columns of Ψ respec-
tively. Because Φ and Ψ are orthonormal, it is easy to know
1=

ffiffiffiffi
N

p
rμr1. If μ approximates its minimum value of

1=
ffiffiffiffi
N

p
, then Φ is viewed as incoherent with Ψ so that the

sensing matrix Θ¼ΦΨ will satisfy RIP with high
probability.

At present, many random matrices have been proved to
satisfy RIP with high probability, such as Gaussian and
Bernoulli matrices [5,6]. It can be shown that random
measurement matrix approaches the optimal sensing
performance which requires least measurements for exact
reconstruction. Moreover, random matrix is incoherent
with any orthogonal sparse basis so that it can be uni-
versally used in variety of sparse transform domains.
However, fully random matrices are difficult to implement
in the hardware and require large memory and high
computing complexity in reconstruction. Recently,
researchers have developed some measurement matrices
with low complexity by different novel methods. For
example, binary sparse measurement matrix [7] with low
complexity and near optimal performance has been
developed by exploiting combinatorial algorithms. In
addition, combing edge detection operator with com-
pletely random sampling operator, mixed adaptive-
random (MAR) matrix [8] has been proposed for high-
quality image restoration. However, these matrices are
designed for specific signals.

Partial orthogonal matrix is another class of structured
measurement matrices, such as partial Fourier transform
matrix [5] and partial Hadamard transform matrix [9],
which are generally constructed by randomly selecting
rows of orthogonal matrices. Although the advantages of
fast computing and friendship to hardware, these partial
orthogonal matrices can only achieve optimal performance
when signal is sparse itself in time domain while the
performance may rapidly degenerate if the signal is sparse
or compressible in some transform domains because it is
difficult to guarantee that these measurement matrices are

incoherent with the transform matrices (sparse basis
matrices). To keep the good structure features of partial
orthogonal matrices and make them suite for more sparse
signals, several structured random matrices have been
proposed. Among them, scrambled Fourier ensemble (SFE)
[10] and scrambled block Hadamard ensemble (SBHE) [11]
have applied the scrambling operator to make them
incoherent with more orthonormal sparse basis matrices.
Combing with completely random matrices and partial
orthogonal sampling system, [12] has proposed the
Structurally Random Matrices (SRM) in which SFE and
SBHE can be viewed as the special cases. SRM can make a
balance between reconstruction performance and com-
puting, storage complexity, however it still have some
drawbacks. Firstly, when SRM is dense (like SFE), the
superiority of fast computing and small storage require-
ment will lose although its optimal reconstruction per-
formance. Secondly, the reconstruction precision will fall if
SRM is sparse especially when the signal is sparse in
sparse or nonuniform basis. Moreover, the fully random
permutation operator in SRM is always hard to hardware
implementation [11].

In this paper we propose partial Random Block
Weighing Matrix (pRBWM) for practical CS based on block
weighing matrix (BWM) [13]. More precisely, this matrix is
obtained by selecting rows uniformly at random from a
matrix Φ¼ FR, where F is a BWM with circulant block
structure and R is the per-random operator from SRM
framework. Moreover, to make pRBWM easy to be
implemented in hardware, we introduce the Chaos-based
permutation (CP) operator to replace the fully random
permutation operator. The proposed pRBWM is universal
with a variety of sparse signals and can achieve high
reconstruction performance simultaneously from the the-
oretical perspective. In addition, from the practical per-
spective, pRBWM can be more easily implemented in
hardware because of the excellent structure of BWM and
the deterministic CP operator. Moreover, although pro-
posed pRBWM is mainly developed on the SRM frame-
work, it overcomes the aforementioned drawbacks of SRM
in some degree.

The remainder of this paper is organized as follows. In
Section 2 we briefly introduce the knowledge about BWM
and the construction of circulant BWM. In Section 3, we
propose pRBWM based on BWM and analyze their per-
formance for CS exact reconstruction. In addition, the CP
operator is proposed for practical considerations. Section 4
reports the simulation results followed by conclusions
in Section 5.

2. The construction of block weighing matrix

Before presenting the proposed measurement matrices,
we firstly introduce some knowledge about the weighing
matrix (WM) and BWM, more details can be referenced in
papers [13–16].
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