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a b s t r a c t

In this paper we take a novel approach to the regularization of underdetermined linear
systems. Typically, a prior distribution is imposed on the unknown to hopefully force a
sparse solution, which often relies on uniqueness of the regularized solution (something
which is typically beyond our control) to work as desired. But here we take a direct
approach, by imposing the requirement that the system takes on a unique solution. Then
we seek a minimal residual for which this uniqueness requirement holds. When applied
to systems with non-negativity constraints or forms of regularization for which sufficient
sparsity is a requirement for uniqueness, this approach necessarily gives a sparse result.
The approach is based on defining a metric of distance to uniqueness for the system, and
optimizing an adjustment that drives this distance to zero. We demonstrate the perfor-
mance of the approach with numerical experiments.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Modern approaches to sparse solutions in linear
regression or inverse problems are often viewed as MAP
estimation [11] techniques. For example, Basis Pursuit [5]
and LASSO [20], employing the ℓ1-norm, can be for-
mulated with a Gaussian likelihood for additive noise and
a Laplace prior [13]. However, the choice of prior dis-
tribution itself is only imposed because it often achieves a
desirable result, namely a result that, in the noise-free
case, can be shown to be equal to the minimum ℓ0-norm
solution. Hence the approach generally amounts to a
heuristic technique. Indeed a great deal of research in
compressed sensing [24] has focused on theoretical guar-
antees for when the desired sparse result will be achieved
for an underdetermined linear system. For example, the
major conditions for uniqueness, such as the restricted
isometry property [4], the nullspace property [8], or the k-
neighborliness property [9], provide guarantees for when
the minimum ℓ1-norm solution for the noise-free

underdetermined system equals the minimal ℓ0-norm
solution. The key to this relationship is uniqueness of the
minimizer (i.e., the situation where there is only solution
which achieves the minimum).

This question of a unique minimizer is mathematically
equivalent to the question of whether a related linear
system has a unique non-negative solution. Based on this
relationship, [10,1–3,22,23] utilize results regarding the ℓ1
norm or derive similar results to develop uniqueness
conditions for non-negative systems. Conceptually this
situation is much easier to envision; an underdetermined
system has m equations and n unknowns with mon, and
non-negativity provides n inequalities to further restrict
solutions. For the solution to be unique, we need at least
n�m of the inequalities to be active and acting as equal-
ities somehow due to the structure of the problem. This, in
turn, means the corresponding elements of the unknown
must be zero and hence the unknown must be sparse.
Note that the non-negative system that is related to the set
of minimum ℓ1-norm minimizers is a case with a very
specific structure. For non-negative systems with more
general structure, a new and easily verified rowspace
condition [3] must also be tested in order to determine if
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the system can have a unique non-negative solution.
Overall, the implication of uniqueness is the same that we
can use a more computationally tractable norm to calcu-
late the ℓ0-norm result.

When non-negativity constraints are imposed as true
prior knowledge in an inverse problem, such as to impose
known physical properties, for example, the perspective
based on establishing uniqueness guarantees fits quite
well. But for applications such as variable or basis selec-
tion, the approach again amounts to a heuristic with a true
goal of achieving a solution with desirable properties, i.e.,
one that is sparse. Slawski and co-authors have investi-
gated the theory and applications of non-negative least
squares (NNLS) as a competing technique versus the
popular ℓ1-norm models for such applications [17–19].
Other researchers have extended non-negativity-based
techniques to include additional means to enforce spar-
sity. In [12] non-negativity constraints are combined with
ℓ1-norm regularization. In [15] non-negativity constraints
are incorporated into an orthogonal matching pursuit
algorithm. However in all these techniques, uniqueness of
the solution is important to the quality of the results, yet is
a property which depends on both the matrix and the
solution, hence cannot be guaranteed. And so the authors
investigate the incorporation of additional heuristics,
based on conventional sparse regularization techniques, to
increase the likelihood of a unique solution.

The technique presented here differs in that we pro-
pose an “additional ingredient” that is a requirement for
uniqueness itself, hence we guarantee a unique solution.
We will focus on the non-negative system as a general
case, and start in the next section by reviewing the rela-
tionship to the ℓ1-regularized and non-negative least-
squares techniques. Then we will derive uniqueness con-
ditions for the solution set and provide an algorithm to
enforce them on the system. Finally we demonstrate the
performance of the algorithm with simulated examples
where we will demonstrate the ability of the method to
enforce unique solutions for a variety of models.

2. Theory

We will address the linear system Ax¼ b̂þn¼ b,
where A is a known m�n matrix with mon; b is a known
vector we wish to approximate with few columns of A, and
x is an unknown vector we would like to estimate; n is a
“noise” vector about which we only have statistical infor-
mation. The NNLS technique [14] solves minxZ0‖Ax�b‖22,
or equivalently,

x� ¼ arg min
xZ0;Δb

‖Δb‖22

Ax¼ bþΔb: ð1Þ
From this perspective we can view NNLS as seeking a
minimal system adjustment to get a feasible x� in the set

SNN ¼ xjAx¼ b0; xZ0
� �

; ð2Þ
where b0 ¼ bþΔb. It can be shown that for all optimal
solutions ðΔb�;x�Þ to Eq. (1), the component Δb� will be
unique. Hence we only need to consider the set SNN given

this Δb�. In other words, we can use results from the well-
known noise-free case. A necessary condition for unique-
ness is the requirement that the rowspace of A intersects
the positive orthant [3]. Mathematically this means the
system ATy¼ β has some solution y for which β has all
positive elements. Geometrically it means that the poly-
tope [25] formed by SNN must be finite in size [7]. Note that
if a general system was converted into an equivalent non-
negative one by replacing the general signal with the dif-
ference of two non-negative signals representing positive
and negative channels, the resulting system matrix would
violate the positive orthant condition. We will presume
throughout this paper that the rowspace of A intersects
the positive orthant for all matrices.

Of course, the NNLS technique need not result in a
sparse solution at all. Hence some techniques also include
ℓ1-regularization or other ingredients in addition to non-
negativity. On the other hand, many popular techniques,
such as LASSO, impose ℓ1-regularization alone. LASSO (in
the form of Basis Pursuit denoising) can be viewed as a
heuristic technique where λ is chosen to trade off sparsity
of the solution with minimal adjustment to the model,
which can be posed in a form similar to Eq. (1), as follows:

x� ¼ argmin
x;Δb

‖Δb‖22þλJxJ1
� �

Ax¼ bþΔb: ð3Þ
When A is underdetermined (i.e., n4m), the situation we
are interested in here, it is known that the LASSO solution
may not be unique [16]. However, as with NNLS, the
residual Δb is always unique [21]. So, again, we can
address the question of uniqueness by focusing on a noise-
free case, here the Basis Pursuit problem, α¼minx JxJ1
subject to Ax¼ b0. In this case the question of uniqueness
applies to the solutions in the set, F ¼ fxARnjAx¼
b0; JxJ1rαg, which can be posed as a set of the form SNN.
However, for intuition consider F as depicted in Fig. 1, the
intersection of ℓ1-norm ball of radius α, and the affine set
of solutions to the linear system, fxjAx¼ b0g. For the
example in Fig. 1, the solution is non-unique, as F contains
an interval of points on the nearest face of the ball. This set
F is the set of all possible minimizers which achieve an
equal minimum ℓ1 norm. It is not clear what is the best
way to handle this situation. From the MAP estimation
perspective, any point on the intersection is equally likely;
the distribution for Pðxjb0Þ will be uniform over F. A typical
algorithm may yield a very-undesirable dense solution in
the interior of F.

In all the above cases, the most fundamental question
we would like to be able to answer is whether an under-
determined system has a unique non-negative solution.
That will be the first goal of this paper. If desired, we can
then easily apply our results to other types of problems
such as NNLS, Basis Pursuit, and LASSO via a mathemati-
cally equivalent system as noted above.

2.1. Uniqueness conditions

To start, we will presume that we have a compatible
non-negatively constrained system determined by A and
b, arising either directly from our application, or, for
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