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a b s t r a c t

For the problem of subspace signal detection, three adaptive detectors have been proposed in
the past, namely, the subspace-based generalized likelihood ratio test, subspace-based
adaptive matched filter, and adaptive subspace detector. In this paper we analyze their per-
formance in the mismatch case, where the actual signal does not exactly lie in the nominal
signal subspace. We derive their statistical distributions, and then obtain analytical expres-
sions for the probabilities of detection and false alarm. It is shown that the signal mismatch
has a significant effect on their detection performance through a quantity, which can be taken
as a measure of the “distance” between the actual signal and the nominal signal subspace.
These results extend the existing theory for rank-one signal detection in the mismatch case.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The problem of detecting amultichannel signal in unknown
Gaussian noise arises in many areas, especially in radar systems
[1]. The most famous adaptive detectors are Kelly's generalized
likelihood ratio test (KGLRT) [2], adaptive matched filter (AMF)
[3], and adaptive coherence estimator (ACE) [4]. For these three
detectors, the signal has a precisely known steering vector.
However, in practical applications, the actual signal steering
vector may not be aligned with the presumed one, due to
violation of underlying assumptions on the sensor array,
environments, or sources [5]. A widely used method to design
robust detectors is adopting a subspace model by assuming
that the actual signal lies in a carefully-designed subspace, but

with unknown coordinates [6]. In [7], the actual signal steering
vector is assumed to lie in a given subspace. According to the
generalized likelihood ratio test (GLRT) criterion, the authors in
[7] propose the subspace-based GLRT (SGLRT), which is a
generalization of the KGLRT. The SGLRT is independently
derived in [8] in the context of polarimetric target detection.
The corresponding two-step GLRT is first proposed in [9] when
the dimension of the subspace is equal to two, and then it is
generalized to the general-rank case in [10]. Essentially, it is the
subspace version of the AMF. Hence, we call it the subspace-
based AMF (SAMF). In addition, the subspace generalization of
the ACE is dealt with in [11], referred to as the adaptive sub-
space detector (ASD) therein.

It is worth noting that although the subspace model is
more robust to the signal mismatch, it cannot be guaranteed
that the actual signal completely lies in the preassigned signal
subspace. When a signal does not lie in the presumed sub-
space, we denote this phenomenon as subspace signal mis-
match. There are some preliminary studies on signal detec-
tion in the presence of subspace signal mismatch. In [12,13]
two robust detectors are designed for point-like targets when
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subspace signal mismatch occurs. In [14] the generalized
adaptive direction detector (GADD) is proposed for the dis-
tributed target detection, which is more robust to subspace
signal mismatch than other relative detectors. Notice that
many papers investigate the statistical performance of sub-
space detectors in the absence of subspace signal mismatch,
e.g., [7–10,15,16]. However, to the best of our knowledge,
performance analysis of subspace detectors has not been
studied for the case of subspace signal mismatch.

In this paper, we derive the statistical distributions of
the SGLRT, SAMF, and ASD in the presence of subspace
signal mismatch, according to which we obtain analytical
expressions for the probabilities of detection (PDs) and
false alarm (PFAs) of these detectors. Remarkably, it is
found that the subspace signal mismatch affects the
detection performance through a quantity, which can
serve as a measure of the “distance” between the actual
signal and nominal signal subspace. This generalizes the
results for rank-one signals, e.g., [5,17–19].

The rest of the paper is organized as follows. Section 2
presents the signal model and related detectors. Section 3
derives the statistical distributions of the detectors and
obtain the analytical PDs and PFAs. Numerical examples are
given in Section 4. Finally, Section 5 concludes the paper.

Notations: Scalars are denoted by lightfaced lowercase
letters, vectors by boldfaced lowercase letters, and matrices
by boldfaced uppercase letters. Cm

n ¼ n!=½m!ðn�mÞ!� is the
binominal coefficient, ðhÞn ¼ hðhþ1ÞU U U ðhþn�1Þ is the
Pochhammer symbol, Bðm;nÞ ¼ ðm�1Þ!ðn�1Þ!=ðmþn�1Þ!
is the Beta function, IGkþ1ðaÞ ¼ e�aPk

m ¼ 0 a
m=m! is the

incomplete Gamma function, and 1F1 ða;b; xÞ ¼
P1

n ¼ 0
½ðaÞnxn�=½ðbÞnn!� is the confluent hypergeometric function of
the first kind. ðU ÞT stands for transpose and ðU ÞH for con-
jugate transpose. PrðUÞ is the probability of the event in the
brackets. The notation � denotes “be distributed as”,
CNNð μ;Q Þ denotes an N � 1 complex circular Gaussian dis-
tribution with a mean μ and a covariance matrix Q ,
CWNðL; Q Þ denotes an N � N complex central Wishart dis-
tribution with L degrees of freedom (DOFs) and a scale
matrix Q . CFM;Nð ξÞ denotes a complex noncentral F-
distribution with M and N DOFs and a noncentrality para-
meter ξ. CBM;Nðδ2Þ denotes a complex noncentral Beta-
distribution with M and N DOFs and a noncentrality para-
meter δ2. When δ2 ¼ ξ¼ 0 the two noncentral distributions
above become central, written as CFM;N and CBM;N , respec-
tively. For two random variables α1 and α2, Efhðα1; α2Þjα2g is
the conditional expectation of hðα1; α2Þ with α2 fixed, where
hðα1; α2Þ is a function of α1 and α2. oC4 denotes the sub-
space spanned by the columns of C, PC ¼ CðCHCÞ�1CH is the
orthogonal projection matrix onto oC4 , and P?

C ¼ IN�PC .
When C is positive definite, C1=2 denotes its square-root
matrix, that is, if D¼ C1=2 then DD¼ C. Finally, 0M�N is an
M � N zero matrix, and IN is an N � N identity matrix.

2. Signal model and related detectors

For a binary hypothesis test, an N � 1 test data x in the
signal-presence hypothesis H1 can be expressed by

x¼ sþn ; ð1Þ

where n is the noise, distributed as n� CNNð0N�1;RT Þ, with
RT being an unknown positive definite matrix. The signal s
is supposed to lie in the subspace oH4 , where H is an
N � s full-column-rank matrix. Hence it can be repre-
sented as s¼Hθ, where the s� 1 vector θ stands for the
unknown coordinate. In contrast, in the signal-absence
hypothesis H0, we have x¼ n. To estimate the unknown
covariance matrix R, it is often assumed that a set of
training data xl, l¼ 1;2; :::; L, is available, and each of them
is signal-free and only contains noise nl. Moreover, nl's are
mutually independent, distributed as nl � CNNð0N�1;RÞ.
Hence, the detection problem can be formulated as

H0: x¼ n; xl ¼ nl; l¼ 1; :::; L;
H1: x¼Hθþn; xl ¼ nl; l¼ 1; :::; L:

(
ð2Þ

In the homogeneous environment (HE) RT ¼ R, and the
corresponding GLRT for the detection problem in (2),
denoted as the SGLRT, is given by [7,8]

tSGLRT ¼
~xHP ~H

~x

1þ ~xHP?
~H
~x
; ð3Þ

where ~x ¼ S�1=2x, ~H ¼ S�1=2H, and S ¼ XLX
H
L is the sample

covariance matrix, with XL ¼ ½x1; x2; :::; xL�. The corre-
sponding two-step GLRT, called the SAMF, in the HE is [10]

tSAMF ¼ ~xHP ~H
~x : ð4Þ

In contrast, in the partially homogeneous environment
(PHE), RT ¼ σ2R [20]. The scaling factor σ2 is unknown,
standing for the unknown power mismatch between the
test and training data. For the detection problem in (2) in
the PHE, the GLRT, referred to as the ASD, has the form [11]

tASD ¼
~xHP ~H

~x
~xH ~x

; ð5Þ

which is statistically equivalent to

tASD' ¼
~xHP ~H

~x
~xHP?

~H
~x
; ð6Þ

since tASD' ¼ ðt�1
ASD�1Þ�1 can be taken as a monotonically

increasing function of tASD.
Remarkably, the statistical performance of the SGLRT is

exploited in [7,8], the SAMF in [9,10], and the ASD in
[15,16], yet all under the assumption of no signal mis-
match. In next section we will investigate the statistical
performance of these three detectors with subspace signal
mismatch in the HE.

3. Statistical performance analysis

When subspace signal mismatch occurs, the actual sig-
nal, denoted by s0, does not belong to the presumed signal
subspace oH4 . To quantify the degree of mismatch, we
introduce a generalized cosine squared (GCS), defined as

cos 2ϕ¼ sH0R
�1HðHHR�1HÞ�1HHR�1s0

sH0R
�1s0

; ð7Þ

where ϕ denotes the angle between s0 and oH4 in the
whitened space. It will be seen that the GCS in (7) plays a

W. Liu et al. / Signal Processing 123 (2016) 122–126 123



Download English Version:

https://daneshyari.com/en/article/562310

Download Persian Version:

https://daneshyari.com/article/562310

Daneshyari.com

https://daneshyari.com/en/article/562310
https://daneshyari.com/article/562310
https://daneshyari.com

