Contents lists available at ScienceDirect

### **Catalysis** Today



journal homepage: www.elsevier.com/locate/cattod

# Oxidation of alkane using $Pt/Eu_2O_3/TiO_2/SiO_2$ catalyst with $O_2$ and $H_2$ in acetic acid under mild conditions

#### Ichiro Yamanaka\*, Yuta Suzuki, Masashi Toida

Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1-S1-43 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

#### ARTICLE INFO

#### ABSTRACT

Article history: Available online 25 February 2010

Keywords: Oxidation Europium catalysis Titanium catalysis Platinum catalysis Active oxygen Alkane A new solid catalyst of  $Pt/Eu_2O_3/TiO_2/SiO_2$  for oxidation of alkane was developed. Oxidation of adamantane using the multi-components supported catalyst with  $O_2$  and  $H_2$  was studied in acetic acid at 313 K. Several multi-components supported catalysts were prepared and tested the oxidation activity. It is found that loading order of  $Eu_2O_3$ ,  $TiO_2$  and Pt on the SiO\_2 support strongly affected the oxidation catalysis. The active catalysts model was proposed from TEM-EDS analysis that very small Pt particles well dispersed on amorphous  $Eu_2O_3$  and  $TiO_2$  on the SiO\_2 support. Eu and Ti oxides concertedly activated  $O_2$  with electrons supplied from  $H_2$  on Pt, and active oxygen species efficiently oxidized adamantane and other alkanes to oxygenated compounds. Active oxygen species could not be identified but its reactivity was studied. It showed radical nature for oxidation of alkanes and a cleavage of C–H bond was the rate-determining step during the oxidation.

© 2010 Elsevier B.V. All rights reserved.

#### 1. Introduction

Oxidation of hydrocarbons under mild conditions remains an attractive topic in organic synthesis and catalysis. An essential point is how to generate active oxygen species. Monooxygenase (*Enz*) activates  $O_2$  using NADH (2e<sup>-</sup>, H<sup>+</sup>) and H<sup>+</sup>, and generates active oxygen species (O<sup>\*</sup>, intermediate), as indicated in Eq. (1). The *Enz* oxygenates hydrocarbon with O<sup>\*</sup> to alcohol, aldehyde and so on (Eq. (2)). The reductive activation of  $O_2$  is very powerful method for the oxidation.

$$O_2 + NADH + H^+ + Enz \rightarrow O * -Enz + H_2O + NAD^+$$
(1)

$$R-H + O * -Enz \rightarrow R-OH + Enz$$
(2)

An analogy of combination of NADH ( $2e^-$ ,  $H^+$ ) and  $H^+$  is  $H_2$ . If we can choose suitable catalyst (*Cat*), the reductive activation  $O_2$  will perform (Eq. (3)) and produces oxygenated compounds (Eq. (4)).

$$O_2 + H_2 + Cat \rightarrow O * -Cal + H_2O \tag{3}$$

$$R-H + O * -Cal \rightarrow R-OH + Cat$$
(4)

Prof. Tabushi first reported application of the reductive activation of  $O_2$  with  $H_2$  for epoxidation of cyclohexene [1], then other researchers reported various catalyst systems for hydroxylation of aromatics, oxidation of alkanes, and epoxidation of alkenes under mild conditions [2–7]. Fairly good oxidation activity was performed but oxidation efficiency was not enough for previous catalyst system [1–7]. To evaluate oxidation efficiency, a H<sub>2</sub>-utilization efficiency ( $H_2$ -*Eff*) was defined in Eq. (5).

$$H_2-Eff(\%) = \frac{\text{oxygenates yield}}{H_2\text{O yield}} \times 100$$
(5)

If the reductive activation of  $O_2$  to  $O^*$  (Eq. (3)) and the oxygenation of hydrocarbon with  $O^*$  (Eq. (4)) are completely proceeded, equal amounts of oxygenates and H<sub>2</sub>O will form and the H<sub>2</sub>-Eff is 100%. The H<sub>2</sub>-Eff values were lower than 10% in previous works [1–7].

We have also reported that  $Eu(OTf)_3-TiO(acac)_2-Pt/SiO_2$  catalyst was active for hydroxylation of benzene to phenol with  $O_2$  and  $H_2$  [8] but the  $H_2$ -*Eff* of 10% was as low as other catalytic system. We improved the catalyst ( $EuCl_3-TiO(acac)_2-Pt/SiO_2$ ) and reaction conditions for oxidation of adamantane and achieved a significant higher  $H_2$ -*Eff* of 75% [9]. The  $EuCl_3-TiO(acac)_2-Pt/SiO_2$  catalyst has very unique catalysis and reactivity; however, it was complicate reaction system of homogeneous  $EuCl_3$  and  $TiO(acac)_2$  catalysts and heterogeneous  $Pt/SiO_2$  catalyst. In addition, the separation of the former components from reaction mixtures is difficult, which is the disadvantage for an industrial application. Thus, we improved the homo/heterogeneous  $EuCl_3-TiO(acac)_2-Pt/SiO_2$  catalyst to a solid catalyst of  $Pt/Eu_2O_3/TiO_2/SiO_2$  and studied its catalysis in this work.

#### 2. Experimental

We prepared a solid catalyst of  $Pt/Eu_2O_3/TiO_2/SiO_2$  using a successive loading method as follows: first, impregnation of  $TiO(acac)_2/CH_2Cl_2$  on  $SiO_2$  and calcination in air at 573 K ( $TiO_2/$ 



<sup>\*</sup> Corresponding author. Tel.: +81 3 5734 2144; fax: +81 3 5734 2144. *E-mail address*: yamanaka@apc.titech.ac.jp (I. Yamanaka).

<sup>0920-5861/\$ –</sup> see front matter @ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.cattod.2010.01.038

SiO<sub>2</sub>); second, impregnation of Eu(NO<sub>3</sub>)<sub>3</sub>/H<sub>2</sub>O on TiO<sub>2</sub>/SiO<sub>2</sub> and the calcination in air at 573 K (Eu<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub>/SiO<sub>2</sub>); third, impregnation of H<sub>2</sub>PtCl<sub>6</sub>/H<sub>2</sub>O on TiO<sub>2</sub>/Eu<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> and the calcination in air at 573 K (PtO/TiO<sub>2</sub>/Eu<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>). We can control loading order of three components on the SiO<sub>2</sub> support and prepared several catalysts. Pre-reduction of the catalysts with H<sub>2</sub> was not conducted; however, color of all catalysts changed from white to gray or dark gray within 5 min after oxidation started by introduction of a gas mixture of O<sub>2</sub> and H<sub>2</sub>. This indicated that PtO reduced to Pt with H<sub>2</sub> in the working state; therefore, we indicated PtO/TiO<sub>2</sub>/Eu<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> as Pt/TiO<sub>2</sub>/Eu<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>. Loadings of each component are, respectively, Pt 1.0 wt%, Eu<sub>2</sub>O<sub>3</sub> 2.0 wt%, TiO<sub>2</sub> 2.4 wt%. We usually prepared the solid catalysts of 1 g at a time.

In oxidation of adamantane, the solid catalyst (0.1 g) was added in the reaction solutions of adamantane (50 mM) and acetic acid (20 mL). A gas mixture of  $O_2$  (96 kPa) and  $H_2$  (5 kPa) was introduced into the reaction mixture and the total flow rate was 20 mL min<sup>-1</sup>. Oxidation was started by stirring with a magnetic spin-bar for 1–10 h at 313 K. We filtrated the reaction mixture and separated the solution and the sold after the oxidation. We neutralized the reaction solution using NaOH aq. and extracted oxygenated products using CH<sub>2</sub>Cl<sub>2</sub> solvent at three times. Oxygenated products were identified by GC-Mass and yields were determined using GC (FID) and HPLC (UV–vis) techniques.

To evaluate reactivity of adamantane by the catalysts, selectivity to secondary oxygenates (2°-*Sel*) was defined in Eq. (6). In addition, 2-adamantanol and 2-adamantanone are much useful rather than 1-adamantanol in the current chemical industry [9]; therefore, the 2°-*Sel* value is important.

$$2^{\circ}-Sel(\%) = \frac{2\text{-adamantanol} + 2\text{-adamantanone}}{\text{sum of adamantane oxygenates}} \times 100$$
(6)

#### 3. Results and discussion

We prepared various solid catalysts supported Pt, Eu<sub>2</sub>O<sub>3</sub>, and TiO<sub>2</sub> on SiO<sub>2</sub> by changing preparation procedures and tested these for oxidation of adamantine with  $O_2$  (5 kPa) and  $H_2$  (96 kPa) in acetic acid, as shown in Fig. 1. Major products were 1adamantanol, 2-adamantanol, 2-adamantanone, and CO<sub>2</sub>. We found that the loading order of the three elements of Pt, Eu<sub>2</sub>O<sub>3</sub>, and TiO<sub>2</sub> on the SiO<sub>2</sub> support strongly affected on the product yields and the  $H_2$ -Eff, The catalysts could separate two groups, active and inactive catalysts. The former was Pt/Eu<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub>/SiO<sub>2</sub>, TiO<sub>2</sub>/Pt/Eu<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> and Pt/Eu<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub>/SiO<sub>2</sub> and the latter was  $TiO_2/Eu_2O_3/Pt/SiO_2,\ Eu_2O_3/TiO_2/Pt/SiO_2\ and\ Eu_2O_3/Pt/TiO_2/SiO_2.$ We noticed a common feature between the two groups. Pt was loaded on after Eu<sub>2</sub>O<sub>3</sub> loading in the active catalyst group; on the other hand, Pt was loaded before Eu<sub>2</sub>O<sub>3</sub> loading in the inactive catalyst group. This fact suggests that Pt on Eu<sub>2</sub>O<sub>3</sub> may be important for the oxidation catalysis. In addition, we tested Pt/ Eu<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> and Pt/TiO<sub>2</sub>/SiO<sub>2</sub> catalysts for the oxidation of adamantane, and the formation rates of sum of products were very low, 10 and 5  $\mu mol \ h^{-1}$  , respectively. Synergy of  $Eu_2O_3$  and TiO<sub>2</sub> was essential for the oxidation. The Pt/Eu<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub>/SiO<sub>2</sub> catalyst showed the highest formation rate of products and a higher  $H_2$ -Eff of 13% among the catalysts in Fig. 1.

Fig. 2 shows effects of  $P(H_2)$  on products yields of the oxidation of adamantane using the  $Pt/Eu_2O_3/TiO_2/SiO_2$  catalyst  $(P(H_2) + P(O_2) = 1:atm)$  for 1 h at 313 K. We observed no oxidation of adamantane at  $P(H_2) = 0$  kPa  $(P(O_2) = 101$  kPa) and significant yields of the oxidation product at higher  $P(H_2) > 68$  kPa  $(P(O_2) < 35$  kPa). The yields of 1-adamantanol, 2-adamantanol and 2-adamantanone increased with increasing  $P(H_2)$  and showed the maximum at  $P(H_2) = 96$  kPa  $(P(O_2) = 5$  kPa). We did not pre-



**Fig. 1.** Oxidation of adamantane using various  $Pt-Eu_2O_3-TiO_2$  solid catalysts with  $O_2$  and  $H_2$  at 313 K. Catalyst 0.1 g; loadings:  $Eu_2O_3$  2.0 wt%,  $TiO_2$  2.4 wt%, Pt 1.0 wt%, adamantane (50 mM) and acetic acid (20 mL).  $P(O_2)$  5 kPa,  $P(H_2)$  96 kPa, total flow rate 20 mL min<sup>-1</sup>.



**Fig. 2.** Effect of  $P(H_2)$  on the oxidation of adamantane using the  $Pt/Eu_2O_3/TiO_2/SiO_2$  catalyst with  $O_2$  and  $H_2$  at 313 K. Reaction time 1 h, catalyst 0.1 g; loadings:  $Eu_2O_3$  2.0 wt%, TiO\_2 2.4 wt%, Pt 1.0 wt%, adamantane (50 mM) and acetic acid (20 mL).  $P(O_2) + P(H_2) = 101$  kPa, total flow rate 20 mL min<sup>-1</sup>.

reduce the prepared catalyst (PtO/Eu<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub>/SiO<sub>2</sub>) with H<sub>2</sub> before the oxidation in the standard experimental procedures; therefore we tested the pre-reduction of the catalyst with H<sub>2</sub> at 423 K, and obtained very similar data to that without the pre-reduction, even at lower  $P(H_2)$ . PtO reduced to Pt under the reaction conditions, as mentioned in Section 2. Higher  $P(H_2)$  conditions are suitable for the oxidation by the Pt/Eu<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub>/SiO<sub>2</sub> catalyst.

To evaluate reactivity of adamantane by the catalysts, a selectivity to secondary oxygenates (2°-Sel) was plotted in

Download English Version:

## https://daneshyari.com/en/article/56233

Download Persian Version:

https://daneshyari.com/article/56233

Daneshyari.com