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Recursive algorithms for estimating quaternion signal vectors are provided. Assuming
stationarity, Gaussianity and C"-properness, two estimation problems are treated: the
prediction and fixed-point smoothing problems. The problems are formulated in a very
general way and solved following a semi-widely linear processing. The suggested
solutions are derived taking additionally into account the information supplied by a
square version of the quaternion observations. This extra information makes it possible to
give improved estimators which outperform the corresponding full-widely linear esti-
mators that ignore such information. A numerical example pertaining to the nonlinear
prediction and fixed-point smoothing problems illustrates the application of the algo-
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1. Introduction

Quaternions are hyper-complex numbers which allow for
convenient and effective statistical modeling of multichannel
signals. They have received much attention in recent years.
For example, quaternion signal processing has encountered
applications in wind forecasting [1], aerospace [2], computer
graphics problems [3], image processing [4], vector sensor [5],
processing of polarized waves [6], and design of space-time
block codes [7].

The adequate type of linear processing in the quater-
nion domain depends on the kind of quaternion proper-
ness [8]. Unlike the case of complex vectors, there exist
three different kinds of quaternion properness, which are
based on the vanishing of three different comple-
mentary covariance matrices. In general, the optimal linear
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processing is full-widely linear, which means that we must
simultaneously operate on the quaternion vector and its
three involutions. However, in the case of jointly Q-proper
or C"-proper vectors, which constitute the two principal
types of properness, the optimal processing reduces to the
conventional or semi-widely linear processing, respec-
tively. Conventional processing ignores the vector involu-
tions while semi-widely linear processing makes use of
the quaternion vector and its involution over the pure unit
quaternion #.

Algorithms adapted for improper signals can fail or suffer
from slow convergence when they are used for proper signals
[9]. Thus, it is essential to devise particular algorithms for
proper signals. In fact, a variety of problems have been solved
using the properness hypothesis, e.g., classification of polar-
ized signals [6], detection [10,11], quaternion VAR modeling
and estimation [12], etc. On the other hand, several methods
are available to determine whether a quaternion random
vector is Q-proper, C"-proper, or improper [13-15].

An important problem in statistical signal processing is
the estimation of a signal from the information supplied
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by another signal. As is well-known, the optimal estimator
under the minimum mean-squared error (MMSE) criterion
is the conditional expectation. Moreover, the Gaussian
hypothesis has been widely used in this problem. For
instance, the Kalman filter is the optimal estimation
algorithm when the signal model is assumed linear and
both state and observation noise are additive Gaussian
(see, e.g., [16]). In the nonlinear case, the optimal filtering
problem poses a challenge since it entails maintaining the
complete description of the conditional probability density
function which in general requires an infinite number of
parameters. So, the nonlinear problem has been addressed
by using approximations in order to develop suboptimal
estimators [16-19]. Notable examples which apply Gaus-
sian approximations are the extended Kalman filter [16],
the unscented Kalman filter [20], the Gauss-Hermite filter
[21], the central difference filter [21] and the Gaussian sum
filters [22,23].

From this background, this paper concentrates on the
nonlinear estimation of quaternion random signal vectors
with unknown probability distributions and under the Gaus-
sianity and C"-properness hypotheses of the observations.
Specifically, two minimum MMSE estimation problems are
tackled following a semi-widely linear approach: the linear
prediction and linear fixed-point smoothing problems. The
suggested semi-widely linear solutions improve the corre-
sponding conventional solutions in two directions: they offer
a better performance (in MSE sense) and they involve
matrices with lower dimensions. The former advantage is
achieved by considering the information supplied by a square
version of the quaternion observations and the latter by the
C"-properness and Gaussianity. Recursivity is another desir-
able characteristic of the solutions and it will be attained by
assuming stationarity conditions. Likewise, the formulation of
the estimation problem considered is very general and the
technique is easily adapted to a wide range of applications. As
we will see in Section 6, the algorithms can be employed, for
example, to estimate a nonlinear function of the signal of
interest.

As noted above, the improved estimators are obtained by
incorporating the information furnished by the square obser-
vations. For that, it is necessary to introduce the concept of
square quaternion vector. Moreover, we show that C"-proper-
ness and Gaussianity ensure the C"-properness of the square
quaternion vectors and the lack of correlation between the
augmented quaternion vector and its augmented square
vector (see Lemma 1). These are key properties that allow
us to split up the semi-widely linear estimators as a sum of
two terms: the conventional quaternion widely linear (QWL)
estimator which ignores the square quaternion vector and a
second estimator built from this last quaternion vector. Such a
representation of the suggested estimators makes them
improved versions of the conventional estimators.

The paper is organized as follows. In Section 2 we firstly
provide some basic definitions and introduce notation, along
with the QWL processing. In Section 3 the C”-properness is
studied for quaternion signal vectors and its impact on square
quaternion signal vectors is investigated. Section 4 addresses
the semi-widely linear prediction problem. Firstly, we for-
mulate the general prediction problem and derive the opti-
mum predictor under a QWL processing. Then we review the

one-stage prediction problem under the C"-properness and
stationarity conditions, and a version of the Durbin-Levinson
algorithm is presented. Finally, we study the general predic-
tion problem by additionally assuming Gaussianity and incor-
porating the information supplied by the square vector of the
observation quaternion process. Section 5 treats the semi-
widely linear fixed-point smoothing problem. Section 6 con-
siders a simulation example which demonstrates the practical
application of the algorithms and proves experimentally the
superiority of the suggested solutions in relation to the one
derived following a QWL processing. Section 7 provides our
concluding comments. To preserve continuity in our presen-
tation, all proofs are deferred to an Appendix.

2. Preliminaries

Throughout this paper, all the random variables are
assumed to have zero-mean. Next we introduce the basic
notation. We use boldfaced upper case letters to denote
matrices (A), boldfaced lower case letters for column vectors
(a), and lightfaced lower case letters for scalar quantities (a).
Superscripts %, T and H represent the quaternion (or com-
plex) conjugate, transpose and Hermitian, respectively. Opm
denotes the n x m zero matrix and I, an identity matrix of
dimension m. The real and imaginary parts of a complex
number will be denoted by R{-} and Z{-}, respectively. The
notation A e R™™ (respectively AeC™™ or AeH™™M)
means that A is a real (respectively complex or quaternion)
n x m matrix. We will remove a dimension in the case of
vectors (e.g, reH™ means that r is an m-dimensional
quaternion vector).

Ifa=[a,...,an]" € C™ then the notation @@ stands for
the vector with square components, i.e. a® =[a?,...,a%]".
Analogously, if £ = {w;} e C™7 then 022 denotes an m x
g matrix of entries a)i Finally, E is the expectation
operator, Py is the projection operator on an arbitrary set
K, K1 & K, is the direct sum of the sets K; and X, and ®
is the Kronecker product.

Consider the quaternion random signal

r(t) = a(t) +ib(t) -+ jo(t) + kd(t) (1)

where a(t), b(t), c(t) and d(t) are real random signals and
the imaginary units (i, j, k) satisfy

==Kk =ijk=—1
ij=k=—ji
jk=i=-kKj
ki=j= —ik

The representation in (1) can be generalized to ortho-
gonal bases of the form [8]:

1 1
n 1 01><3 i
" :{03“ A } j
n k

where AeR33 is an orthogonal matrix (i.e, ATA=1I5).
Likewise, it is assumed that the signs of the rows of A are
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