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ABSTRACT

The sequential Monte Carlo (SMC) implementation of the probability hypothesis density
(PHD) filter suffers from low computational efficiency since a large number of particles are
often required, especially when there are a large number of targets and dense clutter. In
order to speed up the computation, an algorithmic framework for parallel SMC-PHD
filtering based on multiple processors is proposed. The algorithm makes full paralleliza-
tion of all four steps of the SMC-PHD filter and the computational load is approximately
equal among parallel processors, rendering a high parallelization benefit when there are
multiple targets and dense clutter. The parallelization is theoretically unbiased as it
provides the same result as the serial implementation, without introducing any approx-
imation. Experiments on multi-core computers have demonstrated that our parallel
implementation has gained considerable speedup compared to the serial implementation
of the same algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-target tracking (MTT) involves the joint estima-
tion of the number of multiple targets and their states in
the presence of spontaneous birth/spawn/death of targets
and clutter. MTT has a long history of research over a half
of century, with many applications in both military and
commercial realms [1]. Apart from handling the noises in
the state dynamics and observation models, one has to
contend with many more challenges, such as: (i) The
number of targets is unknown and time varying because
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of the spontaneous birth, spawn and death of targets;
(ii) clutter exists and can be significant; (iii) targets can be
miss-detected; (iv) most challenging, data association
between observations and targets in the presence of
clutter that is required in traditional trackers is difficult.

The states of targets and observations in such an
environment are finite-set-valued random variables that
are random in both the number of elements and the values
of the elements. The idea of modelling the states and
observations as random finite set (RFS) is natural and it
allows for overcoming the difficulty of data association
[2,3] in the filtering stage. With the incorporation of RFS
and point process theory in the MTT problem, the prob-
ability hypothesis density (PHD) filter provides a concise
and tractable alternative to the optimal Bayesian filter that
works by propagating the first-order moment associated
with the multi-target Bayesian posterior and is essentially
a density estimator.
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The PHD filter is attracting increasing attention, moti-
vating different derivations, interpretations and imple-
mentations. It is found that the PHD filter asymptotically
behaves as a mixture of Gaussian components, whose
number is the true number of targets, and whose peaks
collapse in the neighbourhood of the classical maximum
likelihood estimates, with a spread ruled by the Fisher
information [4]. A connection between the PHD recursion
and spatial branching processes is established in [5], which
gives a generalized Feynman-Kac systems interpretation
of the PHD recursive equations and enables the derivation
of mean-field implementations. A physical interpretation
of the PHD filter based on the bin model is given in [6]
which gives a more intuitive understanding of the PHD
filter. The PHD filter has also been extended to solve more
MTT-centric complex problems such as distributed sensor
localization [7], parameter estimation [8] and mobile robot
simultaneous localization and mapping [9], to name a few.
Presently, the PHD filter has been implemented in forms of
weighted particles [10], finite Gaussian mixtures (GM) [11]
or their hybrids [12]. In particular, the sequential Monte
Carlo (SMC) implementation that is often referred to the
SMC-PHD filter is gaining special attention [13-15], which
has also prompted new developments of SMC based on the
RFS framework e.g. [16].

The advantage of SMC over GM is that it is free of linear
and Gaussian assumptions. However, to maintain a sufficient
approximation accuracy, a large number of particles are
usually required causing a heavy computational burden. The
situation gets worse in the SMC-PHD filter where the compu-
tational requirements also grow with the number of targets/
observations [17]. Thence, fast computing techniques such as
gating [18,19] and parallel processing [20-23]| appear as
promising approaches to ensure real-time performance,
which however are often based on significant approximations.
With the fast development of multi-core and multi-threading
compatible hardware and software, the parallelization
becomes increasingly attractive and even necessary. To the
best of our knowledge, a fully parallel implementation of the
SMC-PHD filter that is able to provide the same result as the
serial implementation is still lacking. Such a parallel SMC-PHD
filter is the focus of this paper.

There are four main steps in the implementation of
particle filters (PFs) including state updating, weight
updating, resampling and estimate extraction. The essence
of parallelization is distributing calculation operations to
different processing elements (PEs) for parallel computing.
In the conventional parallel implementation of particle
filters, particles are distributed among PEs. However, even
for the PF targeted for single target tracking (referred to
the basic PF hereafter), the resampling prevents direct
parallel processing due to joint processing of all particles.
The parallelization technique for resampling achieved in
these particle filters e.g. [24-25] may be applied in the
MTT-based particle PHD filter as they have been done in
[20-22] at the price of inevitable considerable commu-
nication overhead. However, there are more challenging
operations that consist of joint processing of particles in
the SMC-PHD filter in addition to the resampling. First, the
weight updating of each particle in the PHD updater
requires the weight information of all the other particles

thereby preventing the parallelization that distributes parti-
cles among PEs. Secondly, what used in [20-23] for extracting
multiple estimates in the SMC-PHD filter is still the (k-means)
clustering method which is computationally intensive and is
less suitable for parallelization. It is unclear how the k-means
clustering can be parallelized without introducing significant
communication overhead. These operations together with the
resampling step form the primary challenges for paralleliza-
tion of the SMC-PHD filter.

To overcome the parallel computing difficulty in resam-
pling, weight updating and estimate extraction, these
steps are parallelized in a novel manner that is based on
distributing observations instead of distributing particles
while the prediction is carried out on the distributed
resampling particles in each PE. In particular, new resam-
pling and estimate extraction methods that are suitable for
parallel processing are proposed. Significantly different
from [20-23], our parallelization is able to obtain the
same estimation result as the serial implementation. All
four steps of the SMC-PHD filter are fully paralleled and
significant speedup is achieved. The parallel algorithm is
described with regard to the multi-core computer that
consists of one central unit (CU) and several PEs.

The paper is arranged as follows. A novel insight of the
SMC-PHD filter that partitions the weight of particles into
components with respect to observations is provided in
Section 2, which forms the foundation of our approach.
Related works are also briefly described in this section. The
technical details of our approach are presented in Section 3.
Qualitative analysis and quantitative experiments are given
in Sections 4 and 5 respectively. We conclude in Section 6.

2. Background and related work
2.1. An observation-based view of the PHD equation

To model the discrete filtering problem, the state is
assumed to follow a Markov process in the state space
x =R™, with a transition density fy,_{(-|-). That is, a
given state x,_; at time k—1 will either die with prob-
ability 1—pg,(xx_1) or continue to exist at time k with
survival probability ps,(Xc_1) and move to a new state
with a transition probability density [y 1(xxlXc_1 ). The
Markov process is partially observed in the observation
space Z < R™. That is, at time k, a given target x; € X is
either miss-detected with probability 1—pp(xc) or
detected with detection probability pp (x;) and generates
an observation z € Z,, with likelihood g (z;|xy)-

The collections of target states and observations at scan
k can be represented as finite sets X = {Xx1,....Xkn,} € F()
and Zy={zk1,....Zxm,} € F(Z2), where N, and My are the
number of targets and the number of observations respec-
tively, while F(y) and F(Z) are the collections of all finite
subsets of targets and observations, respectively.

Based on the finite set statistics, the PHD filter derived
by Mahler estimates jointly the number and the state of
targets by propagating in time the intensity function
(namely the PHD function) [2]. The following assumptions
are required in the PHD filter: (A.1) each target is assumed
to evolve and generate observations independently of
others; (A.2) the clutter distribution is assumed to be
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