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In this work we propose a technique to remove sparse impulse noise from hyperspectral
images. Our algorithm accounts for the spatial redundancy and spectral correlation of
such images. The proposed method is based on the recently introduced Blind Compressed
Sensing (BCS) framework, i.e. it empirically learns the spatial and spectral sparsifying
dictionaries while denoising the images. The BCS framework differs from existing CS
techniques that employ fixed sparsifying basis; BCS also differs from prior dictionary
learning studies which learn the dictionary in an offline training phase. Our proposed
formulation has shown over 5 dB improvement in PSNR over other techniques.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this work, we address the problem of denoising hyper-
spectral images when they are corrupted by impulse noise.
Previously, most studies in hyper-spectral denoising only
concentrated on removing Gaussian noise. However, hyper-
spectral images are also corrupted by impulse noise [1-3];
there is hardly any work on impulse denoising for hyper-
spectral images. The impulse noise arises when some of the
sensors become saturated (leading to ones) or when they do
not work (leading to zero valued pixels). The problem of
impulse denoising in hyperspectral imaging is relatively
new; hence there are not many prior studies on this topic.

There have been studies in removing impulse noise from
gray-scale (single band) images. There are two approaches
to address single band impulse denoising - traditional
median filter based methods [4,5] and modern optimization
based techniques [6-8]. The optimization based techniques
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are more flexible in handling random valued impulse noise,
while the median filtering variants are mostly suited for
extreme valued salt-and-pepper noise.

Techniques developed for removing impulse noise from
grayscale images can be applied on each spectral bands of
the hyperspectraldatacube, but such an approach would
not be optimal. This is because, the hyperspectral images
are spectrally correlated, and such piecemeal (band-by-
band) denoising techniques do not account for the spectral
correlation. Prior studies in Gaussian noise removal from
hyperspectral images showed that exploiting the spectral
correlation indeed improves denoising results [9-11].

For denoising, the transform domain sparsity of the
signal is usually exploited. Previously, data independent
transforms (like wavelets) were used to sparsify the image;
but in recent times it was observed that data dependent
learned dictionaries yield better results for both Gaussian
[12], impulse [7,8] and even speckle [13] denoising.

In this work, we propose to exploit the spatio-spectral
redundancy of the hyper-spectral datacube to reduce impulse
noise. Such a problem has not been addressed before. How-
ever, instead of employing a fixed dictionary, we will learn the
dictionary while denoising the hyperspectraldatacube. Our
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approach is based on the Blind Compressed Sensing (BCS)
approach [14]. Unlike prior studies [7,8,12,13], we do not learn
the dictionary in an offline stage and then use the learned
dictionary for denoising; rather we learn the dictionary while
denoising in an online fashion. This is the fundamental
difference between BCS and prior dictionary learning techni-
ques — BCS marries dictionary learning with signal estimation.

The rest of the paper will be organized into several
sections. Relevant studies will be briefly reviewed in
Section 2. Our proposed approach will be described in
Section 3. The experimental results will be shown in
Section 4. The conclusions of this work and future direc-
tion of research will be discussed in Section 5.

2. Review of literature

We are interested in the additive noise model; both
Gaussian noise and impulse noise belong to this category.
The noise model can be expressed as follows:

y=X+n M

where x is the original image (to be estimated) corrupted
to by noise 5 to yield a noisy image y.

Sparsity based techniques assume that the image is
sparse in a transform domain such as wavelets. Incorpor-
ating wavelet domain sparsity in (1) leads to:

y= WTa—i-n 2)

where « is the sparse wavelet coefficients, W is the wavelet
transform (W' is the inverse).

Gaussian denoising is the most well studied problem;
assuming that the noise is zero mean with unit variance,
denoising is achieved by solving for the sparse wavelet
coefficients:

min [ly =W al3 +Allalls 3)

The L-norm data fidelity term arises owing to the
nature of Gaussian noise; the [;-norm regularization pro-
motes a sparse solution. Wavelet sparsity is very well
known topic in Gaussian denoising and does not require
any reference for support.

There are also Total Variation (TV) [15] based denoising
techniques that express denoising in the analysis form, i.e.

min [ly —X||3 +ATV(x) “

TV assumes that images are piecewise smooth; with
finite number of jump discontinuities. This leads to a
sparse representation in finite difference.

Gaussian noise is dense but usually small in magnitude
— it corrupts all the pixel values but the magnitude of
corruption is small. In such a case, an l,b-norm data fidelity
is an ideal choice. Impulse noise is sparse but has larger
amplitudes. An extreme case of impulse noise is the salt-
and-pepper noise where the pixels are corrupted to either
the maximum or minimum possible values; there can also
be random valued impulse noise. In either case, as the
number of corrupted pixels is small, an [;-norm data
fidelity is more appropriate [6,16]

min [ly —x[ly +4TV(x) ()

One can also formulate impulse denoising in the
synthesis form, by exploiting wavelet domain sparsity
instead of TV.

So far we have discussed techniques that exploit the
sparsity of the image in a known basis (wavelet or finite
difference). A seminal work [12] showed that it is possible
to improve upon these results by learning the sparsifying
dictionary. In dictionary learning, the dictionary is first
learnt from image patches, such that the learnt dictionary
can represent the patches in a sparse fashion. The learning
problem is expressed as

rBiZn||W—DZ||% such that Z is sparse (6)

here W is the training set of image patches, D is the learnt
dictionary and Z is the sparse representation of the patches
in dictionary D.

The learnt dictionary is later used for image denoising
in the same manner as a wavelet dictionary, i.e. it is
assumed that x=Dz. The denoising is expressed as

min [ly - Dz|I3 + 21zl @

Recent studies in impulse denoising [7,8] adopted the
same technique. Since the interest is in impulse noise, the
data fidelity term is an [;-norm instead of an l,-norm

min ||y —Dz||1 +2l|z]lx ®)

So far, we have talked about denoising gray scale
(single spectral band) images. In hyperspectral imaging,
the image is acquired at multiple spectral bands. The
images at different bands are correlated to one another.
To reduce noise from such images, it is possible to apply
the techniques developed for single band images to each of
the spectral bands separately. But this does not yield the
best possible results. Such techniques only exploit the
spatial redundancies within each band; better results can
be obtained by jointly exploiting the spatial and spectral
correlations.

The noise model for hyperspectral images is as follows:

Y=X+N €))

Each column of X represents a clean hyperspectral
image from a band; the columns of Y are the noisy versions
of these images. The problem is to recover X given the
noisy images Y.

It is well known that 2D wavelets lead to a sparse
representation of images; this concept was extended to
the hyperspectraldatacube - in [17] it was shown that the
datacube is sparse in 3D wavelets and hence denoising can
be formulated as

min [[vec(Y) — Wipall3 +Allall (10)

here a = W3pvec(X).

Similarly, there are other works that exploit the TV
framework for denoising hyperspectral images using
spatio-spectral correlations [10]. In some other studies
[9], it is additionally assumed that the datacube X is of
low-rank, this is because the columns of X are not linearly
independent owing to spectral correlations.
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