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A novel two-dimensional (2-D) direct-of-arrival (DOA) and mutual coupling coefficients
estimation algorithm for uniform rectangular arrays (URAs) is proposed. A general mutual
coupling model is first built based on banded symmetric Toeplitz matrices, and then it is
proved that the steering vector of a URA in the presence of mutual coupling has a similar
form to that of a uniform linear array (ULA). The 2-D DOA estimation problem can be
solved using the rank-reduction method. With the obtained DOA information, we can
further estimate the mutual coupling coefficients. A better performance is achieved by our
proposed algorithm than those auxiliary sensor-based ones, as verified by simulation

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Direction of arrival (DOA) estimation for two-dimensional
(2-D) arrays is an important area of array signal processing
and has received much attention in past years [1]. The well-
known multiple signal classification (MUSIC) algorithm can be
applied directly for 2-D estimation [2], but its computational
complexity is very high due to the required 2-D spectral
search. On the other hand, the UCA-ESPRIT and 2-D Unitary
ESPRIT algorithms can pair the azimuth and elevation angles
belonging to the same source automatically without 2-D
spectral searching or iterative optimization procedures [3,4].
In [5], a polynomial root-finding-based method was proposed
using two parallel ULAs, by decoupling the 2-D problem into
two 1-D problems to reduce the computational complexity.
Another computationally efficient method was proposed in
[6], where the propagator method in [7] was employed based
on two parallel ULAs. However, this method requires pair
matching between the 2-D azimuth and elevation estimation
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results and may not work effectively for some situations. To
overcome the problem in [6], an L-shaped array was
employed instead in [8]. Based on such an L-shaped geome-
try, a 1-D searching algorithm without the need of pair
matching was proposed in [9]. while the subspace-based
algorithm in [10] requires neither constructing the correla-
tion matrix of the received data nor performing singular
value decomposition (SVD) of the correlation matrix and
utilizes the conjugate symmetry property to enlarge the
effective array aperture. Another computationally efficient
algorithm for URA was proposed in [11], where the complex-
valued covariance matrix and the complex-valued search
vector are transformed into real-valued ones, and the 2-D
problem is decoupled into two 1-D problems with real-
valued computations.

However, for the above algorithms and methods to
work, it is normally assumed that the exact array manifold
is known in advance, which may not be practical in many
applications due to the effect of mutual coupling. Similar to
the 1-D case, the effect of unknown mutual coupling can
cause severe performance degradation in 2-D DOA estima-
tion [12,13]. As a result, some 2-D array calibration algo-
rithms have been proposed. In [14], azimuth estimation is
decoupled from elevation estimation and can be performed
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Fig. 1. Geometry of a URA with M x N sensors.

without the knowledge of mutual coupling, while for
elevation estimation, a 1-D parameter search is performed
and the elevation-dependent mutual coupling effect can be
compensated effectively. In [15], a rank-reduction (RARE)
algorithm for UCA was proposed based on the special
structure of the coupling matrix considered in [16] and
the result derived in [17]. In [18], two mutual coupling
calibration methods were provided for uniform hexagon
arrays (UHAs), one of which is also based on the method in
[16], while the other is implemented by setting some
auxiliary sensors. In [19], the mutual coupling model was
extended to L-shaped arrays, where the mutual coupling
effect is compensated using the outputs of properly chosen
sensors and a rank-reduction propagator method is devel-
oped for joint estimation of both azimuth and elevation
angles to avoid parameter pairing and 2D spectral search.
To mitigate the effect of mutual coupling, the algorithm in
[20] set the sensors on the array boundary to be auxiliary
ones. The subarray's output and size are used to calculate
the noise subspace and steering vector. The procedure of
this algorithm is similar to the 2-D MUSIC algorithm. It
obtains the DOAs through 2-D spectral searching by exploit-
ing the orthogonality between the noise subspace and
steering vector.

The auxiliary sensor-based algorithms, although effec-
tive in the presence of mutual coupling, share the common
drawback that the effective aperture of the array is
reduced. When considering mutual coupling between
sensors farther apart, a larger number of auxiliary sensors
are needed, which in turn reduces the number of sensors
available for DOA estimation, since the total number of
sensors is fixed. Therefore, the performance of these
algorithms will deteriorate significantly when the size of
original array is small or the mutual coupling effect is
strong.

In this paper, we construct a general mutual coupling
model for URAs using banded symmetric Toeplitz matrices
and based on this model, we prove that the steering vector
of such a URA in the presence of mutual coupling has a
similar form to that of ULA using the method proposed in
[21]; then, the rank-reduction method is introduced to
estimate the azimuth and elevation angles, which are
then used to obtain the unknown mutual coupling coeffi-
cients. As shown in our simulation results, the proposed

algorithm can achieve a better performance than auxiliary
sensor-based ones since it employs the full array aperture
for DOA estimation.

The rest of this paper is organized as follows. In Section 2,
the signal model in the presence of mutual coupling is
introduced. The proposed DOA and mutual coupling coeffi-
cients estimation algorithm is presented with detailed ana-
lysis of the steering vector in Section 3. Simulation results are
given in Section 4 and conclusions are drawn in Section 5.

Notations: (~)T, (‘)H and (-)* represent transpose, con-
jugate transpose and pseudo-inverse of a matrix or vector,
respectively. [-],, denotes the element at pth row and gth
column of a matrix, and ® denotes the Kronecker product.

2. Problem formulation with banded symmetric Toeplitz
mutual coupling matrix

Consider K far-field narrowband signals si(t), k=
1,2,...,K, with identical wavelength 1 impinge on a URA
of M x N omnidirectional sensors spaced by dy in the
x-axis direction and dy in the y-axis direction, as shown
in Fig. 1. The direction of arrival of the kth signal is denoted
by (6k, ¢x), where 6, and ¢, are the azimuth and elevation
angles, respectively. The received data vector x(t) of the
array at sample t can be expressed as

X(t) = As(t)+n(t) (1)

where  X(t) = [X1(), ..., XN(), XN 1 (), ..., Xan (), ..., Xun ()]
holding the MN received array signals, A=[a(01,9,),
a(02, ¢7), ...,a(HK,(/)K)]T is the array manifold matrix, s(t) =
[s1(0), S2(t), ..., sg(D]" is the source signal vector and n(t) =
[M1(0), ..., nN(E), Ny 1 (), ..., Man(D), ..., nyn(D)]T is the additive
white Gaussian noise vector. The steering vector a (6, ;)
can be modeled as

a0k o) = ay (O 9x) ® ax (6. @) ()
where

ay (0. 1) =[1.8y (Ok- 1) By~ (O 1)1 3)
(O, ok) = (1. B (O 0) By = (O 1) " (4)
with

By (6k. @x) = exp{j2zA~'dy sin(6y)sin (@)} (5)
By (Ok, @x) = exp{j2zA~dx cos (6x) sin (¢y)} (6)

For simplified notation, the pair of angles (6, ¢) is omitted
in the following when not causing any confusion.

Considering the effect of mutual coupling, (1) should be
modified as

X(t) = CAs(t)+n(t) (7)

where C denotes the mutual coupling matrix (MCM). As
indicated in [16,20,22], the coupling between neighboring
sensors with the same inter-element spacing is almost the
same, while the magnitude of mutual coupling coefficients
between two far apart elements would be so small that
this effect can be ignored. Therefore, the mutual coupling
of ULA can be modeled as a banded symmetric Toeplitz
matrix. In [20], this model was extended to URAs assuming
that each sensor is only affected by the 8 immediately
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