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a b s t r a c t

Emitter geolocation under local scattering environment is explored. We derive an analytic
model for the received signal where the local scattering environment is modeled as a
stochastic process using the Gaussian Angle of Arrival (GAA) model. For the signal model
we provide both optimal and sub-optimal, computationally-simpler, 1-step (direct)
emitter geolocation algorithms. The proposed algorithms enable to estimate the emitter
's position directly, using the received signal samples. The proposed algorithms extract the
emitter position information from both fading channel statistics and temporal correlations
when the fading channel is quasi-static. It is shown that the devised 1-step algorithms
outperform 2-step emitter geolocation algorithms, formerly proposed for the problem.
Numerical examples are provided to illustrate the performance. The results are compared
with the theoretical performance projected by the Cramér–Rao lower bound.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The method of single-step geolocation (a.k.a. Direct-Posi-
tion-Determination/DPD) has been shown to be an efficient
geolocation method that outperforms conventional two-step
geolocation methods (separately estimating location-
dependent parameters and then the location itself), under
low signal-to-noise ratio (SNR) conditions in a variety of
systems and applications [1–9]. Yet, in most of the publica-
tions investigating DPD performance, the emitting source is
modeled as a point source. While enabling some important
insights into the fundamental limitations of single-step emit-
ter geolocation, the rather simplistic point-source model
rarely provides a high-fidelity representation of the emitter
signal in a multipath-dense environment. Such an environ-
ment is typically crowded with scatterers surrounding the

emitter and reflecting its signal towards the receiving array. In
such case, the emitter is not perceived as a point but rather as
a “scattered” or as a “distributed” source.

The advancement in smart antenna technology during
the 1990s has motivated the development of spatial/
temporal channel models to facilitate accurate perfor-
mance prediction of multi-antenna systems. The paper
by Ertel et al. [20] provides a comprehensive summary of
these multi-antenna channel models. Most of these mod-
els are based on a combination of spatial and temporal
numerical channel modeling, for which analytic analysis is
difficult. One of these channel models, termed Gaussian
Angle of Arrival (GAA), was proposed by Zetterberg [10],
and was later adopted by Ottersten, Trump and others
[11–17]. The GAA model was developed for obtaining a
statistical description of the array correlation under nar
row-band Rayleigh fading channels, often characterizing
macro-cell cellular environments in suburban areas. The
model assumes that the emitter lies within a cluster of
scatterers, generating multiple reflections of the emitter's
signal. The associated angle of arrival (AOA) at an antenna
array has a Gaussian distribution.
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Since its publication, the GAA model has been applied
mainly to AOA-estimation problems of distributed sources
under various channel and signal models [13–25]. How-
ever, very little attention was given to geolocation of such
distributed sources. This paper aims to bridge this gap by
incorporating the GAA model into geolocation problem
model and deriving single-step algorithms for locali
zing distributed sources under Rayleigh fading channel
conditions.

Main contributions: We formulate the signal model for
geolocation of an emitting source in the presence of local
scattering under quasi-static temporal Rayleigh fading,
using multiple base-station antenna arrays. We extend
the GAA model covariance matrix derivation, originally
developed for uniform-linear arrays (ULA), to arbitrary-
shaped antenna arrays. For this model we derive both
optimal and computationally-simpler, sub-optimal, single-
step (direct) geolocation algorithms for emitter geoloca-
tion. Based on both numerical performance and complex-
ity analysis, we introduce the recommended algorithm for
the problem. In addition, we provide a detailed derivation
of the Cramér Rao lower bound (CRLB) for the received
signal model. Using numerical analysis of the CRLB expres-
sions we highlight expected estimation accuracy under
different temporal-fading and scattering conditions.

Paper organization: Section 2 outlines the problem
formulation. Then Section 3 provides several optimal and
sub-optimal algorithms for 1-step geolocation of a static
emitter under local scattering. Numerical performance exa-
mples of the devised algorithms are given in Section 4, and
their computational-complexity is analyzed in Section 5.
Final conclusions are given in Section 6, and in the App-
endix we provide the derivation of the CRLB for the pro-
blem.

2. Problem formulation

2.1. Spatial model

Consider a stationary emitter that at an unknown time,
t0, begins to transmit a narrow band signal with an
envelope of sðtÞ. The signal bandwidth is W, which satisfies
the condition W{f c, where f c is the carrier frequency.1

The emitter's signal is intercepted by L geographically
separated Base-Stations (BS), each is equipped with an
antenna-array with M antenna elements.

As depicted in Fig. 1, the emitter is surrounded by Nsc

closely spaced scatterers (which are assumed to be about
the same height or higher than the emitter). The scatterers
generate multiple reflection rays of the emitter's signal
around the emitter. The emitter signal observed by each of
the receiving arrays is built up by a super-position of these
independent rays. This phenomenon is known as “local
scattering”. The emitter is assumed to be completely

obscured by the scatterers such that there is no direct line
of sight (LoS) between the emitter and any of the receiving
arrays. In case there is a LoS between the scattered emitter
and any of the arrays, the formed fading channel is called
Ricean [17,23].

The rays emanating from the scatterers impinge on
each array with a delay associated with the propagation
time. The ray originating from the nth scatterer hits the
ℓth array after ðτℓþΔτℓnÞ s, where τℓ denotes the nominal
propagation time from the emitter located at p¼ ½x; y�T to
the ℓth BS located at qℓ ¼ ½xℓ; yℓ�T (both defined in a global
coordinates-system), and Δτℓn denotes the excess time
delay due to the signal reflected by the nth scatterer.

The nominal propagation time is given by

τℓ ¼
dℓ
c

dℓ ¼ Jp�qℓ J
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xℓÞ2þðy�yℓÞ2

q
ð1Þ

where c denotes the propagation speed.
Commonly, it is assumed that all the time delays of the

independent rays generated by the scatterers are small in
comparison with the reciprocal of the signal bandwidth
and therefore are unresolvable [18,19]. Thus, the following
approximation may be used:

sðt�τℓ�Δτℓn�t0Þ � sðt�τℓ�t0Þ9sðt� ~τℓÞ ð2Þ
where ~τℓ9τℓ�t0.

The noise-free signal received by the ℓth BS array can
be described as

xℓðtÞ ¼ bℓðtÞ � sðt� ~τℓÞ ð3Þ
where bℓðtÞ is a M � 1 vector describing the array's
response to the channel at time t. Assuming that the nth
ray received by the ℓth array has a complex gain, βℓ;nðtÞ,
and an angular perturbation, ϕℓ;n, then array response
may be described as a superposition of all the rays
impinging on the array given by

bℓðtÞ ¼
XNsc

n ¼ 1

βℓ;nðtÞaℓðθℓþϕℓ;nÞ ð4Þ

with aℓðθÞ being the ℓth array M � 1 steering vector with
itsmth element located at qℓ;m ¼ ½xℓ;m; yℓ;m�T (where qℓ;m is
defined w.r.t. the array center located at qℓ). The response
of this element to a signal arriving from position p¼ ½x; y�T
is given by

½aℓ�m ¼ 1ffiffiffiffiffi
M

p eðı2π=λÞ xℓ;m cos θℓðpÞþyℓ;m sinθℓðpÞ½ � ð5Þ

where ı¼
ffiffiffiffiffiffiffiffi
�1

p
and λ is the transmitted signal wavelength

and (see e.g., [26])

θℓðpÞ ¼ tan �1 y�yℓ

x�xℓ

� �
ð6Þ

In the sequel we adopt the GAA model for obtaining
closed-form analytic expressions for the statistical distri-
bution of the array response vectors. These expressions are
shown to be position-dependent and therefore enable to
extract the emitter position from multiple observations of
the channel. The GAA model assumes that the nth ray
complex gain is distributed as βℓ;nðtÞ � CN ð0;1=NscÞ, and
the distribution of the angle perturbations generated by

1 The propagation time of the signal across the array must be small
compared to the signal's envelope rate of change, given by 1=W . Let the
array aperture be Y ¼ ~A � λ, where ~A is an integer, which usually varies
between 1 and 10. Then, at the propagation speed, c, we have
Y=c{1=W ) ~A=f c{1=W . Thus, we have W=f c{1= ~Ar1 ) W{f c .
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