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a b s t r a c t

Pricing is often used in noncooperative games or Nash equilibrium problems (NEPs) to
meet global constraints in cognitive radio networks. In this paper, we analyze the pricing
mechanism for a class of solvable NEPs with global constraints, called monotone NEPs. In
contrast to the ideal assumption of perfect measure of pricing functions, in practice
pricing functions are often imperfectly known and subject to uncertainty. We theoretically
analyze the impacts of bounded uncertainty and price-updating step sizes of imperfect
pricing in globally constrained NEPs for cognitive radio networks.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Noncooperative games are also called Nash equilibrium
problems (NEPs) [1] that characterize conflicts among
interacting decision-makers called players, where each
player is regarded to be rational and wishes to selfishly
optimize his own payoff. Such game theoretical models
have been widely applied to communications and signal
processing systems where conflicts or competition are
inevitable, for example interference among wireless links
(see a special issue [2] on game theory).

The solution to an NEP, i.e., Nash equilibrium (NE), is a
point at which no player can gain or achieve a better
payoff by unilaterally changing his strategy. In practice,
such a solution may be obtained via the best-response
algorithms [1], in which players simply optimize their own

payoff given the strategies of the others according to a
prescribed schedule, e.g. a sequential order. One example
is the iterative waterfilling algorithm that arose in power
control for digital subscriber lines [3]. However, due to
players' selfish behaviors, the NE is often socially ineffi-
cient in the sense that global requirements are often
unsatisfied.

A common way to improve the social efficiency of the
NE is to use pricing that penalizes players' selfish beha-
viors through some pricing function [4]. As an important
application, several pricing mechanisms [5,6] have been
proposed for cognitive radio networks (CRNs) where
secondary users (SUs) compete the resources of primary
users (PUs) but have to satisfy some global interference
constraints imposed by PUs. It was shown in [5,6] that the
pricing mechanisms can be distributedly implemented and
enforce the players (SUs) to meet the global constraints.

The NEP based methods rely on local information
measurements, which are, however, often imperfect in
CRNs. For example, the channel state information (CSI)
between SUs and PUs [7], the interference plus noise (IPN)
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[8], or the best response [9] could be imperfectly measured
by SUs. In particular, [10,11] considered imperfect SU-to-
PU CSI in pricing NEP designs for CRNs. Although these
works considered imperfect information measurements by
SUs, they all assumed that pricing functions can be
perfectly measured by PUs. In practice, however, pricing
functions are more likely to be imperfectly measured since
any imperfect local measurement (of, e.g., CSI) by SUs
could lead to imperfect measurement of pricing functions
by PUs. To the best of our knowledge, imperfect pricing in
globally constrained NEPs for CRNs has not been addressed
yet.1

In this paper, we would like to investigate the influence
of imperfect pricing in a class of solvable NEPs called
monotone NEPs [13] with achievable solutions by the best-
response algorithms. The monotonicity leads to a favorable
property called co-coercivity that facilitates the NEPs to
meet global constraints with perfect pricing. Then, we
consider a more practical situation where pricing functions
are imperfectly measured and subject to bounded uncer-
tainty. We theoretically analyze the global impacts of
bounded uncertainty and choices of step sizes for the
pricing updating mechanism in globally constrained NEPs.
The studied framework is then demonstrated through
numerical examples in CRNs.

2. Nash equilibrium problem with pricing for CRNs

Consider a CRN of K PUs and N SUs over L-subcarrier
interference channels. Let hji

l
be the channel between the

secondary transmitter j and the secondary receiver i on
subcarrier l, and gik

l
be the channel between the transmit-

ter of SU i and the receiver of PU k on subcarrier l. Let
pi ¼ ðpliÞLl ¼ 1 with pi

l
being the power allocated by SU i on

subcarrier l. Then, the information rate of SU i is given by
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where σi
l
is the noise power on subcarrier l. Observe that

ri pi;p� i

� �
depends not only on SU i's transmit power pi

but also on the transmit power p� i ¼ ðpjÞja i of the other
SUs. A popular way to design strategies of cocurrent
transmission of all SUs is to exploit noncooperative game,
also known as NEP.

An NEP consists of three components [1]: players,
payoff (or cost) functions, and strategy sets. Here, the
players are i¼ 1;…;N SUs and the payoff function of player
(or SU) i is his information rate riðpi;p� iÞ. The strategy set
of player i is given by Pi ¼ fpi:

PL
l ¼ 1 p

l
irPig, which limits

the transmit power of SU i below Pi. Then, in the NEP, each
player i would aim to maximize his information rate
riðpi;p� iÞ by choosing a proper power strategy from Pi.
The solution to the NEP, also known as Nash Equilibrium
(NE), is a strategy profile p¼ pi

� �N
i ¼ 1, at which no player

can gain or achieve a larger rate by unilaterally changing
his strategy.

The above-mentioned (non-priced) NEP is built on the
selfish nature of the players and thus may lead to socially
inefficient NE in the sense that, at the NE, either some
global constraint is violated or overall system performance
is not good. Specifically, to protect PUs' communications in
the CRN, the SUs must satisfy the global interference
constraints

XN

i ¼ 1

XL

l ¼ 1

jglikj2plir Ik; k¼ 1;…;K ð2Þ

which restrict the interference caused by all SUs at each PU
k below the given threshold Ik. Each SU selfishly optimiz-
ing his own payoff would lead to violations of the global
interference constraints.

An effective way to tackle this issue is to introduce
pricing into NEPs and properly penalize players' selfish
behaviors. For each PU k, we can define the pricing
function zkðpÞ ¼

PN
i ¼ 1

PL
l ¼ 1 jglikj2pli� Ik, and associate

each pricing function zkðpÞ with a price λkZ0. Then, the
priced NEP can be mathematically formulated as

ðGλÞ:maximize
pi APi

riðpi;p� iÞ�λTzðpÞ; 8 i ð3Þ

where zðpÞ ¼ zkðpÞð ÞKk ¼ 1 and λ¼ λk
� �K

k ¼ 1. One can naturally
interpret λk as the price of violating the interference
constraint zkðpÞr0. Let giðpi;p� iÞ ¼ riðpi;p� iÞ�λTzðpÞ.
Then, the NE of Gλ is given by a point pn such that
giðpn

i ;p
n

� iÞZgiðpi;pn

� iÞ, 8piAPi for i¼ 1;…;N. By properly
choosing λ, the global interference constraints can be
satisfied at the NE pn. Therefore, one shall expect

λZ0; zðpnÞr0; λTzðpnÞ ¼ 0 ð4Þ
where the last condition simply says if the interference
constraint is satisfied then no pricing is needed. We term
Gλ and (4) a priced NEP and ðλn

;pnÞ the pricing equilibrium
(PE) if the price vector λn satisfying (4) at the NE pn of Gλn .
It was shown in [5,6] that the priced NEP approach leads to
a nice distributed network design.

3. Best-response and pricing algorithms

Searching the PE of a priced NEP includes actually two
parts: choose proper prices λ and find the NE of Gλ with
given λ, both depending on the properties of the strategy
sets, the payoff functions, and the pricing functions. For
the considered CRN we have the following properties: (1)
Pi is a convex compact set; (2) riðpi;p� iÞ is twice differ-
entiable and convex in pi for 8 i; (3) zkðpÞ is convex in p for
8k. We also introduce FðpÞ ¼ �∇pi

rðpÞ� �N
i ¼ 1 and

P ¼∏N
i ¼ 1Pi, where ∇pi

rðpÞ is the gradient of rðpÞ with
respect to pi. With the above properties, given any λZ0
the NEP Gλ is guaranteed to possess at least one solution
[5].

To solve the NEP Gλ with given λ, we introduce an
important concept called the strong monotonicity: FðpÞ is
strongly monotone on P if ðx�yÞT ðFðxÞ�FðyÞÞZαs‖x�y‖2
for 8x; yAP with a positive constant αs. To verify the
strong monotonicity of FðpÞ, let us define an N � N matrix
Φ with ½Φ�ij ¼ �suppAP‖�∇2

pipj
rðpÞ‖2 for ia j and ½Φ�ii ¼

infpAPλminð�∇2
pi
rðpÞÞ, where J � J2 de notes the spect-

ral norm and λminð�Þ denotes the minimum eigenvalue of
1 In the case that payoff functions are not fully known, learning

mechanisms can be used [12].
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