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a b s t r a c t

In adaptive filtering, several algorithms are developed in the quest for greater conver-
gence speed, mostly relying on second order statistics. Here we modify the Recursive Least
Square (RLS) equations by using as performance surface a weighted sum of even error
power. As a result, the equations turn out to be simple, elegant, while yielding faster
convergence and preserving the computational cost when compared with the existing RLS
algorithm.

& 2015 Published by Elsevier B.V.

1. Introduction

The least mean square (LMS) and the recursive least square
(RLS) algorithms have been the hallmark of adaptive filtering,
but they have been developed under two very different
approaches. The first is a stochastic approximation of gradient
descent and the latter is an on-line mathematical recursion of
Wiener's solution that works with growing data. Normally one
stresses as a major difference between the two algorithms the
use of second order approximation in the RLS, i.e. the RLS
implements an on-line Newton-like gradient search using a
different stepsize for each direction. But the fact of the matter
is that the instantaneous error never appears explicitly in the
RLS algorithm, so the difference is deeper than the inclusion of
second order information in the formulation. And this is
unfortunate, because the error brings instantaneous informa-
tion about the parametric fitting of the model to each sample
of the time series. This is the reason that the LMS is a fast
tracker, and why RLS has difficulty in tracking as it is well
known in the literature [1]. Moreover the selection of the
forgetting factor in RLS is most of the times heuristic, although
old work such as [2] has recognized its importance to fit AR
models to speech data.

This paper brings the error explicitly to the RLS algorithm
formulation by proposing a new cost function that preserves
the mean squared-error (MSE) solution, but allows for the
exploitation of higher order moments of the error to speedup
the convergence of the RLS algorithm. The idea is based on
Widrow's least mean square fourth (LMF) algorithm [3], where
the dynamics of learning are dissociated from the MSE solu-
tion. The geometry of the problem tells it all: the quadratic
error cost function and the fourth power error cost function
have the same global minimum, but in most of the search
space, the fourth power has a higher slope (except near the
neighborhood of the minimum), therefore the speed of adap-
tation is faster. The instantaneous error was used in [4], which
developed an RLS algorithm. Chambers and Colleagues [5]
proposed the Least Mean Mixed-Norm (LMMN) Algorithm,
which combines the LMS and LMF algorithms, and also used
the instantaneous error.

Previous work has also attempted to include the instanta-
neous error in the RLS algorithm, but the methods have been
heuristic. An automatic gain control (AGC) scheme realized by
estimating the cross correlation between the error and the
input signal was included in [6]. In [7] a technique to improve
the convergence rate of RLS algorithm is presented, where the
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gain vector takes into consideration the value of 1=ξðnÞ
�� ��,

where ξðnÞ is a priori estimation of the error. Our work is
different because its main goal is to create from first principles
(new cost functions) a mechanism to include instantaneous
error information in the RLS algorithm, make it track better,
and allow for the design of an adaptive forgetting factor. As we
will see the key aspect of our approach is to include the error
in the “Kalman gain” that effectively controls the speed of
adaptation of the RLS algorithm. The paper is organized as
follows: Section 2 presents the proposed algorithm, Section 3
shows the simulations results and Section 4 presents discus-
sion and conclusion.

2. Proposed algorithm

The basic structure of an adaptive FIR filter is composed of a
desired signal di, an input vector ui ¼ ½ui;ui�1;…;ui�Lþ1�T ,
and an error ei, which is used to update the filter weight vector
wn ¼ ½w0;n;w1;n;…;wL�1;n�T . The goal is to recover an approx-
imation of di by estimating the output signal yi ¼wT

n�1ui, after
calculating the error ei ¼ di�yi, where n represents the
current sample with 1r irn and L is the filter length.

The famed RLS algorithm is an on-line implementation of
the Wiener solution [1], which solves the regression problem
in functional spaces. All these algorithms optimize the filter
coefficients to minimize the mean square error cost function.
In this work, we propose to use a weighted sum of even
power of the error, J ¼ Pm

j ¼ 1 k
m� jE λe2j

� �
; leading to the

empirical risk,

Jn ¼
Xm
j ¼ 1

km� j
Xn
i ¼ 1

λn� i ei½ �2j
n o

; ð1Þ

where j, m, k and n are positive integers, subject to design.
Note that when j¼1, k¼1, and m¼1 we obtain the MSE cost
function. The exponential weighting factor, λ, is the conven-
tional forgetting factor that normally is selected close to, but
less than one. The weighting term km� j is just a multiplicative
term that plays a role of accelerating the convergence. The
more interesting terms are j and m which are related to the
cost function. Note that j41 effectively chooses an even
power of the error and m adds the different powers of the
error, effectively meaning that the empirical cost function
becomes a sum of m even powers of the error.

If we remove the sum in (1), the weighting term km� j and
for j¼2, we will have the cost function that becomes
Widrow's Least mean fourth (LMF) algorithm. Basically the
LMF displays a large slope when compared with the MSE cost
function in most of the areas of the parameter space, except in
a neighborhood of the minimum. The larger the j the steeper
is the cost function and the higher is the gradient, except near
the minimum where the slope becomes essentially flat.
Therefore, a gradient descent algorithm working with a single
value of j will face an intrinsic compromise of very quickly
decreasing the error, but then crawling to the minimum value.
This intuition can be translated mathematically since when
increasing the power of the error the eigenvalue spread of the
input autocorrelation matrix increases proportionally.

In [4], we have shown that the cost function with k¼1,
m¼1 and j41 in fact supports an RLS like algorithm that has
faster convergence than the RLS algorithm. But of course the

sole use of one single power of the error is not optimal as we
discussed. We now show how Eq. (1) can be used to derive a
new family of even faster RLS type algorithms.

In order to get the optimumweight vector ŵn, we calculate
the instantaneous gradient of Jn as ∇Jn ¼

Pm
j ¼ 1 �2�f

aj
Pn

i ¼ 1½λn� i � eαj

i � ei � ui�g; where aj ¼ j � km� j and αj ¼ 2j�2.
Now, equating ∇Jn to zero, we define the optimum value of the
weight vector ŵn by the matrix equation: ŵn ¼Φ�1

n zn; where
the L-by-L correlation matrix Φn and the L-by-1 cross-
correlation vector zn are now defined by

Φn ¼
Xm
j ¼ 1

aj
Xn
i ¼ 1

λn� i � eαj

i � uiuT
i

h i( )
;

zn ¼
Xm
j ¼ 1

aj
Xn
i ¼ 1

λn� i � eαj

i � di � ui

h i( )
: ð2Þ

Notice that both the autocorrelation function and the cross-
correlation vectors are now an explicit function of the instan-
taneous error unlike the conventional quantities in adaptive
filtering. This means that the instantaneous error is now
affecting the shape of the performance surface, but as we shall
prove below the optimal solution is still independent of the
error and remains the Wiener solution. This means that we
have gained further control on the dynamics of learning
without affecting the final solution.

Isolating the term corresponding to i¼n from (2) we obtain

Φn ¼ λΦn�1þ
Xm
j ¼ 1

aj � eαj
n

n o2
4

3
5un � uT

n;

zn ¼ λzn�1þ
Xm
j ¼ 1

aj � eαj
n

n o2
4

3
5dn � un; ð3Þ

where Φn�1 is the “old” value of the correlation matrix and
zn�1 is the “old” value of the cross-correlation vector.

In order to compute the optimal estimate ŵn using the
RLS algorithm, we have to determine the inverse of the
correlation matrix Φn, and will also use a basic result in
matrix algebra known as the matrix inversion lemma. When
applying this lemma as shown in [1] to Φn in (3) we obtain

Φ�1
n ¼ λ�1Φ�1

n�1�
λ�1Φ�1

n�1unuT
nΦ

�1
n�1

λ � Pm
j ¼ 1 aj � eαj

n

n oh i�1
þuT

nΦ
�1
n�1un

; ð4Þ

where Pn ¼Φ�1
n and the vector,

gn ¼
Pn�1un

λ � Pm
j ¼ 1 aj � eαj

n

n oh i�1
þuT

nPn�1un

; ð5Þ

is referred to as the Kalman gain vector. When comparing this
result with the conventional gain in the RLS algorithm, it is clear
that the error term affects directly the forgetting factor. There-
fore we can think that our approach effectively modulates the
forgetting factor with the instantaneous error information,
which makes the gain not only dependent upon the input
signal dynamics, but also a function of the desired response
through the error. Defining Pn ¼ λ�1 Pn�1�gnuT

nPn�1
� �þβI;

where β is a very small constant to avoid singularities. We can
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