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a b s t r a c t

Dimensionality reduction in multivariate time series analysis has broad applications,
ranging from financial data analysis to biomedical research. However, high levels of
ambient noise and various interferences result in nonstationary signals, which may lead to
inefficient performance of conventional methods. In this paper, we propose a nonlinear
dimensionality reduction framework using diffusion maps on a learned statistical
manifold, which gives rise to the construction of a low-dimensional representation of
the high-dimensional nonstationary time series. We show that diffusion maps, with
affinity kernels based on the Kullback–Leibler divergence between the local statistics of
samples, allow for efficient approximation of pairwise geodesic distances. To construct the
statistical manifold, we estimate time-evolving parametric distributions by designing a
family of Bayesian generative models. The proposed framework can be applied to
problems in which the time-evolving distributions (of temporally localized data), rather
than the samples themselves, are driven by a low-dimensional underlying process. We
provide efficient parameter estimation and dimensionality reduction methodologies, and
apply them to two applications: music analysis and epileptic-seizure prediction.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the study of high-dimensional data, it is often of
interest to embed the high-dimensional observations in a
low-dimensional space, where hidden parameters may be
discovered, noise suppressed, and interesting and signifi-
cant structures revealed. Due to high dimensionality and
nonlinearity in many real-world applications, nonlinear
dimensionality reduction techniques have become increas-
ingly popular [1–3]. These manifold-learning algorithms
build data-driven models, organizing data samples accord-
ing to local affinities on a low-dimensional manifold. Such
methods have broad applications to, for example, analysis

of financial data, computer vision, hyperspectral imaging,
and biomedical engineering [4–6].

The notion of dimensionality reduction is useful in multi-
variate time series analysis. In the corresponding low-
dimensional space, hidden states may be revealed, change
points detected, and temporal trajectories visualized [7–10].
Recently, various nonlinear dimensionality reduction techni-
ques have been extended to time series, including spatio-
temporal Isomap [11] and temporal Laplacian eigenmap [12].
In these methods, besides local affinities in the space of the
data, available temporal covariate information is incorpo-
rated, leading to significant improvements in discovering the
latent states of the series.

The basic assumption in dimensionality reduction is that
the observed data samples do not fill the ambient space
uniformly, but rather lie on a low-dimensional manifold.
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Such an assumption does not hold for many types of
signals, for example, data with high levels of noise [4,
13–15]. In [14,15], the authors consider a different, relaxed
dimensionality reduction problem on the domain of the
underlying probability distributions. The main idea is that
the varying distributions, rather than the samples them-
selves, are driven by few underlying controlling processes,
yielding a low-dimensional smooth manifold in the domain
of the distribution parameters. An information-geometric
dimensionality reduction (IGDR) approach is then applied
to obtain an embedding of high-dimensional data using
Isomap [1], thereby preserving the geodesic distances on
the manifold of distributions.

Two practical problems arise in these methods, limiting
their applicability to time series analysis. First, in [14,15]
multiple datasets were assumed to be available, where the
data in each set drawn from the same distributional form,
with fixed distribution parameters. Then, the embedding was
inferred in the space of the distribution parameters. By taking
into account the time dependency in the evolution of the
distribution parameters from a single time series, we may
substantially reduce the number of required datasets. A
second limitation of previous work concerns how geodesic
distances were computed. In [14,15] the approximation of the
geodesic distance between all pairs of samples was computed
using a step-by-step walk on the manifold, requiring OðN3Þ
operations, which may be intractable for large N.

In this paper, we present a dimensionality-reduction
approach using diffusion maps for nonstationary high-
dimensional time series, which addresses the above short-
comings. Diffusion maps constitute an effective data-driven
method to uncover the low-dimensional manifold, and
provide a parametrization of the underlying process [16].
The main idea in diffusion maps resides in aggregating local
connections between samples into a global parameterization
via a kernel. Many kernels implicitly induce a mixture of
local statistical models in the domain of the measurements.
In particular, it is shown that using distributional information
outperforms using sample information when the distribu-
tions are available [14]. We exploit this assumption and
articulate that the observed multivariate time series
XtARN ; t ¼ 1;…; T , is generated from a smoothly varying
parametric distribution pðXt jβtÞ, where βt is a local para-
meterization of the time evolving distribution. We propose
to construct a Bayesian generative model with constraints on
βt , and use Markov Chain Monte Carlo (MCMC) to estimate
βt . Diffusion maps are then applied to reveal the statistical
manifold (of the estimated distributions) using a kernel with
the Kullback–Leibler (KL) divergence as the distance mea-
sure. Noting that the parametric form of distributions
significantly affects the structure of the mapped data, the
Bayesian generative model should avoid using a strong
informative prior without substantial evidence.

Diffusion maps rely on the construction of a Laplace
operator, whose eigenvectors approximate the eigenfunc-
tions of the backward Fokker–Planck operator. These
eigenfunctions describe the dynamics of the system [17].
Hence, the trajectories embedded in the coordinate system
formulated by the principal eigenvectors of the Laplace
operator can be regarded as a representation of the under-
lying controlling process θt of the time series Xt .

One of the main benefits of embedding the time series
samples into a low-dimensional domain is the ability to
define meaningful distances. In particular, diffusion-maps
embody the property that the Euclidean distance between
the samples in the embedding domain corresponds to a
diffusion distance in the distribution domain. Diffusion
distance measures the similarity between two samples
according to their connectivity on the low-dimensional
manifold [3] and has a close connection to the geodesic
distance. Thus, diffusion maps circumvent the step-by-step
walk on the manifold [14], computing an approximation to
the geodesic distance in a single low-cost operation.
Another practical advantage of the proposed method is
that we may first reveal the low-dimensional coordinate
system based on reference data, and then in an online
manner extend the model to newly acquired data with a
low computational cost. This is demonstrated further
when considering applications in Section 4.

The proposed framework is applied to two applications
in which the data are best characterized by temporally
evolving local statistics, rather than based on measures
directly applied to the data itself: music analysis and
epileptic seizure prediction based on intracranial electro-
encephalography (icEEG) recordings. In the first applica-
tion, we show that using the proposed approach, we can
uncover the key underlying processes: human voice and
instrumental sounds. In particular, we exploit the efficient
computation of diffusion distances to obtain intra-piece
similarity measures on well-known music, which are
compared with the state-of-the-art techniques.

In the second application, one goal is to map the
recordings to the unknown underlying “brain activity
states”. This is especially crucial in epileptic seizure pre-
diction, where preseizure (dangerous) states can be dis-
tinguished from interictal (safe) states, so that patients can
be warned prior to seizures [18]. In this application, the
observed time series is the icEEG recordings and the
underlying process is the brain state, e.g., preseizure or
interictal. IcEEG recordings tend to be noisy, and hence,
the mapping between the state of the patient's brain and
the available measurements is not deterministic, and the
measurements do not lie on a smooth manifold. Thus, the
intermediate step of mapping the observations to a time-
evolving parametric family of distributions is essential to
overcome this challenge. We use the proposed approach to
infer a parameterization of the signal, viewed as a model
summarizing the signal's distributional information. Based
on the inferred parameterization, we show that preseizure
state intervals can be distinguished from interictal state
intervals. In particular, we show the possibility of predict-
ing seizures by visualization and simple detection algo-
rithms, tested on an anonymous patient.

This paper makes three principal contributions. First,
we present a data-driven method to fit flexible statistical
models adapted to time series. In particular, we propose a
class of Bayesian models with various prior specifications
to learn the time-evolving statistics from a single trajectory
realization that accurately models local distributional
parameters β. Second, we complement the analysis with
diffusion maps based on the distributional information
embodied in time-series dynamics. By relying on a kernel,
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