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a b s t r a c t

We propose the use of the second derivative of Anisotropic Gaussian Kernels for ridge
detection. Such kernels, which have proven successful in edge and corner detection, offer
interesting advantages over isotropic kernels. In the case of ridge detection, these advantages
include the increase of the sensitivity at junctions, as well as an improved characterization of
blob-like artefacts. We do not only illustrate these advantages on synthetic images, but also
perform a comparison on a new dataset for line detection, which is composed of 100 images
of in vitro fungi.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Line detection is one of the most fundamental procedures
of low-level image processing. Ridges (bright lines on a dark
background) and valleys (the opposite) usually hold critical
information for the analysis of images, especially for the
extraction of graph-like structures. This technique plays a
prominent role in many automated processes, such as photo-
grammetry and remote sensing [1,2]. Line detection is also
relevant for the analysis of biological or biomedical structures,
including vessels or bronchi profiling and measurement [3,4].
Although such applications demand high-level information
for accomplishing their goals, they usually rely on an initial

phase of line characterization. In the remainder of this work,
we refer to line detection as ridge detection, in order to align
with the established nomenclature in the literature. Never-
theless, the adaptation of any ridge detection algorithm to
valley detection is usually straightforward (see e.g. [5]).

Together with edges and corners, ridges are the most
studied low-level features in the literature. The analysis of
these three features is often coupled [6,7]. Also in this work
we exploit the relationship between edges and ridges. This
connection can be seen in many different ways, the most
evident one being that a ridge is composed, at a very small
scale, of two locally parallel step edges [2,8,9]. From an
analytical point of view, edges are local maxima of the first
order partial derivative of a signal, while ridges (resp.
valleys) are local maxima (resp. minima) of the second
order derivative.1 Both notions can be formulated in similar
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terms through the local analysis of the Jacobian or Hessian
matrices of an image, leading to an evident relationship
between both features [7,11]. An exhaustive analysis of this
relationship can be found in [10,12] from a mathematical
perspective, and in [13] from a topological perspective.
From this fundamental relationship, it seems clear that
the strategies used for detecting edges and ridges mainly
differ in the order of differentiation applied to the original
signal. In this work we elaborate on this relationship to
produce a flexible ridge detector inspired by well-known
first order differentiation kernels.

The analysis of edges and lines is so similar that there is
some controversy onwhether they are different concepts. This
is partially due to the fact that no clear definition has been
agreed upon for edges, leading to ad hoc or ground-truth-
based characterizations [14]. For example, Papari and Petkov
assumed that the edges in an image are the set of lines that
human observers would consent on to be the contours in that
image [15]. Since some humans actually mark up lines as
edges, they conclude that every line in the image should be
regarded as a contour, although none of the lines is a boundary
between two regions of different colors or textures [15]. Also
relevant is the fact described by Canny that boundaries
between polyhedral objects manifest themselves as lines
[16], which is also demonstrated by the hybrid edge profiles
presented by Perona and Malik [17]. Similar observations have
been reported for specific types of images, such as ultrasound
scans [18], in which edges between tissues manifest them-
selves as peaks in brightness. Despite such controversy, we
adhere to the widely accepted assertions by Lindeberg [7] on
the characterization of edges and lines as maxima of the first
and the second partial derivative, respectively.

Ridge detection methods often rely on the analysis of
the first or second derivative of the images, which is usually
extracted by filtering the image with kernels [12,19]. Other
ridge detection techniques impose certain conditions on the
processing or the images, or even demand the intervention
of humans [2]. For example, path optimization or tracking
techniques call for either the semi-supervised introduction
of the endpoints of the segments, or the inclusion of a
critical initial phase of endpoint selection [20,21]. Although
some authors advocate the need for human intervention
[2], we believe that this induces a severe, and often
undesired, limitation for applied researchers. Alternatively,
transformation-based methods (such as those using the
Hough transformation) are not well conditioned to analyze
complex scenes with intricate networks in which ridges
merge, break and branch. An example of this is the Line
Segment Detector (LSD) method by Grompone von Gioi
et al. [22], in which the Hough transformation is used to
detect line segments, mostly yielding straight segments.
Despite the visually impressive results, the detected edges
do not match the exact position of the silhouettes in the
original images, since the Hough transformation results in a
simplification of their traces. In this work we elaborate on
the use of elongated kernels for the characterization of the
second partial derivative of an image. These kernels, created
as a second partial derivative of the Anisotropic Gaussian
Kernels introduced by Shui and Zhang [23], are able to
adapt to the local conditions of the ridges in terms of
width, roundness and orientation. Moreover, we introduce

a multiscale procedure that permits the fusion of the local
results obtained with several kernels, so that the ridges at
each region of the image are characterized by the most
suitable kernels. Note that most authors of practical appli-
cations combine a phase of line detectionwith a subsequent
phase of problem-aware line discrimination, which incor-
porates contextual knowledge. Such discrimination can be
done in terms of the length of the ridge segments, their
width or any other contextual hint, and involves very
different classification techniques (see, e.g. [1,3,24]). In our
case, we propose a context-unaware method for line
detection, which is further customized for its application
to fungal branch delineation for in vitro growth tracking.
This customization is tested on a new dataset containing
100 images of fungi with hand-made ground truth.

The remainder of this work is organized as follows. In
Section 2, we review the use of Isotropic Gaussian Kernels
(IGKs) of different orders in the literature. Section 3 covers
the use of Anisotropic Gaussian Kernels (AGKs), which are
further applied to a multiscale ridge detection algorithm in
Section 4. Section 5 includes an experimental validation
with a new dataset of in vitro fungal images. Finally,
Section 6 discusses some conclusions.

2. Gaussian kernels for low-level feature detection

Gaussian kernels are among the most employed tools for
image processing, and have proven useful for a number of
different tasks. The reasons for using such kernels range from
their isotropy, steerability or decomposability properties
[25,26] to the special characteristics related to their integration
or differentiation. Additionally, the fast computation of their
multidimensional extensions was given as an argument for
their use during the early years of image processing [16]. It is
generally agreed upon that Gaussian kernels are a very
convenient option for the robust computation of both the
first and the second derivative of a discrete signal, and
consequently for the computation of its Jacobian and Hessian.

The study of Gaussian kernels can be subdivided
according to their order of differentiation. The zeroth order
kernels (i.e. Gaussian kernels) are used for regularization
prior to signal processing. The reasons are diverse, and
include their ability to eliminate Gaussian noise [16] and
the fact that they produce no new artefacts (maxima or
minima of the first derivative) in the image [27]. They form
the core of the most employed scale-space in the litera-
ture, the Gaussian Scale-Space [7,28,29], and they have
also been linked to other scale-spaces [30]. Another use is,
for example, the approximation of the Laplacian of a signal
by a difference of Gaussians (see [31]). First Order Isotropic
Gaussian kernels (FOIGKs) have been used extensively as
well, especially after the results obtained by Canny [16]. In
his paper, Canny observed that the optimal kernel for 1D
step edge detection under additive white Gaussian noise is
similar to the negative first derivative of a Gaussian
kernel.2 Note that FOIGKs are not the only Gaussian

2 In fact, Canny quantified the difference of performance between the
optimal 1D kernel and the negative first derivative of a Gaussian to be
about 20% [16], in terms of his penalty criteria.
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