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This paper aims at designing a digital fractional order differentiator for a class of signals
satisfying a linear differential equation to estimate fractional derivatives with an arbitrary
order in noisy case, where the input can be unknown or known with noises. Firstly, an
integer order differentiator for the input is constructed using a truncated Jacobi
orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville
derivative is derived, which is enlightened by the algebraic parametric method. Secondly,
a digital fractional order differentiator is proposed using a numerical integration method
in discrete noisy case. Then, the noise error contribution is analyzed, where an error
bound useful for the selection of the design parameter is provided. Finally, numerical
examples illustrate the accuracy and the robustness of the proposed fractional order
differentiator.

Noise error analysis
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1. Introduction

Fractional calculus has a long history and has been bec-
oming very useful in many scientific and engineering fields,
including control, flow propagation, signal processing, and
electrical networks (see, e.g. [1-8]). An interesting research
topic on fractional calculus is related to the estimation of the
fractional order derivatives of an unknown signal from its
discrete noisy observation. The objective is to design digital
fractional order differentiators, which should be robust
against noises. Various robust fractional order differentiators
have been proposed in the frequency domain (see, e.g. [9,10])
and in the time domain (see, e.g. [11-16]). They can be
divided into two classes: fractional order model-free differ-
entiators (see, e.g. [9-15]) and fractional order model-based
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differentiators (see, e.g. [16]). The first class of fractional order
differentiators are obtained by truncating the analytical exp-
ression. Hence, this generates truncated errors even in noise-
free case (see, e.g. [13]). The second class of fractional order
differentiators are obtained from the differential equations
of considered signals. They do not introduce any truncated
errors.

Existing fractional order differentiators are usually exten-
sions of integer order differentiators. Among the exising
methods, the recent algebraic parametric method originally
introduced by Fliess and Sira-Ramirez for linear identifica-
tion [17] has been applied to design integer order model-
free differentiators (see, e.g. [18-23]), and integer order
model-based differentiators (see, e.g. [24-26]). The idea of
this method is to apply some algebraic operations (such as
differentiations and multiplications), in the frequency dom-
ain, to the equation of the studied signal. The obtained
differentiators are exactly given by algebraic integral form-
ulae in the time domain. It has been shown in [27,28] that,
thanks to the integral formulae, these differentiators exhibit
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good robustness properties with respect to corrupting noi-
ses even if the statistical properties of the noises are unk-
nown. Very recently, the algebraic integer order model-free
differentiators have been extended to fractional case [12,13,
29]. However, the algebraic parametric method has not been
applied for fractional order model-based differentiators.

The modulating functions method is another method
which has been extended to the fractional case. This method
has been introduced by Shinbrot [30]. It gives similar results
to the algebraic parametric method but works in the time
domain. In [16], generalized modulating functions have been
introduced to design fractional order model-based differen-
tiators. However, the generalized modulating functions are
more complex to construct than the classical ones.

The aim of this paper is to apply the algebraic parametric
method to design a robust fractional order model-based diff-
erentiator. Moreover, it will be shown that the proposed diff-
erentiator can also be obtained by classical modulating func-
tions without using generalized modulating functions. For
this purpose, we will focus on a specific class of signals satis-
fying a linear differential equation, where the input can be
unknown or known with noises.

This paper is organized as follows: definitions and some
useful properties of fractional calculus, modulating functions,
and Jacobi orthogonal polynomials are recalled in Section 2.
The main results are given in Section 3. Firstly, an integer
order differentiator for the input is constructed using a tru-
ncated Jacobi orthogonal series expansion. Secondly, the alge-
braic parametric method is applied to express the Riemann-
Liouville integrals and derivatives of the considered signal by
algebraic formulae in continuous noise-free case. Then, it is
shown that these integral formulae can also be obtained using
the modulating functions method. Thirdly, a digital fractional
order differentiator is introduced in discrete noisy case. More-
over, some error analysis is given. In Section 4, numerical res-
ults illustrate the accuracy and the robustness of the proposed
fractional order differentiator. Finally, conclusions are outlined
in Section 5.

2. Preliminary
2.1. Problem formulation

In this paper, a class of signals satisfying the following
differential equation are considered:

veel, Y ay®t)=u(t), (1)
i=0

where neN* a,eR* aqeR, for i=0,...,n-1, yeC"(),
ueC"(I),and I =[0,h]c R,. If (1) is considered as a linear
system with the input u, then y is the corresponding
output. The objective of this paper is to estimate the
Riemann-Liouville fractional derivatives of the output y
in noisy environment, where the input can be unknown or
known with noises. For this purpose, some useful tools are
recalled in the following subsections.

2.2. Riemann-Liouville integrals and derivatives

Definition 1 (Diethelm [5, p. 13]). Let fe R*, and f be a
continuous function defined on R. Then, the Sth order
Riemann-Liouville fractional integral of f is defined by
VieR%,
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where /'(-) is the Gamma function defined by I'(z)= [
&exp(—x)x*~ 1 dx and satisfies I'(z+1)=2z[(z) (see [31,
pp. 255-256]).

Definition 2 (Podlubny [4, p. 62]). Let aeR* with
I-1<a<I, leN* and f e C(R), where C(R) refers to the
set of functions being [-times continuously differentiable
on R. Then, the ath order Riemann-Liouville fractional
derivative of fis defined as follows: Vte R*,

dl t l—a—1
F(l—a)@/o (t—1) f(r)dr.

N
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Remark that if 0 < # < 1, then the integral given in (2) is
improper. Hence, the fth order Riemann-Liouville integral
is defined by an improper integral. Moreover, according to
(3)Riemann-Liouville derivatives are also defined by
improper integrals, which are the integer order derivatives
of the Riemann-Liouville integrals of order smaller than 1.

According to (2) and (3), Riemann-Liouville integrals
and derivatives satisfy the following additive index laws.

® [et feR, /N, neN, and feC"(R). Then, we have
[4, p. 71] Yt e RY,

f—n -
n ty if n,
4 50} - {J[ fo if p>

4
D' Pf(t) else. @

® et aeR% with I-1<a<l leN* and feC""(R).
Then, we have Vte R* ,

dn a a+n
7 Dif Oy =D (o). 6)

In the following theorem, the Leibniz formula for
Riemann-Liouville integrals is recalled. The Leibniz for-
mula for Riemann-Liouville derivatives can be found in
[5, p. 33].

Theorem 1 (Leibniz formula for Riemann-Liouville integrals
[3, p. 75]). Let pe Ry /N, and assume that f is continuous
on [0, h] with some h > 0, and g is analytic on [0, h]. Then, the
following formula holds: vt €10, h],

Frrogen=>" (l._ﬂ )g“)(r)J{’”f(r), 6)

i=0
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