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a b s t r a c t

The theory of compressed sensing (CS) indicates that a sparse vector lying in a high
dimensional space can be accurately recovered from only a small set of linear measure-
ments, under appropriate conditions on the measurement matrix. For multiple sparse
signals that share common locations of the nonzero entries, simultaneous orthogonal
matching pursuit (SOMP) is a widely used algorithm for joint recovery. In this paper, when
both the measurements and the measurement matrix are perturbed by some errors, we
analyze the performance of SOMP based on restricted isometry property (RIP). For an
almost sparse signal ensemble fxjARNg, where the locations of the K (K{N) largest
magnitude entries in each xj are identical and the differences among each signal are not
very large, the results reveal that the set of these locations can be recovered exactly under
some RIP-based conditions. We prove that the derived conditions are rather tight for a
special scenario. Furthermore, we extend the analysis to strong-decaying signal ensemble,
where the decay of entries in each signal is sufficiently strong. The results show that the
corresponding RIP-based conditions are relaxed when compared with arbitrary sparse
signal ensemble.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recent theory of compressed sensing (CS) states that a K-
sparse signal xARN can be represented by its fewer mea-
surements in the form of

y¼Φx; ð1Þ

where yARM is the measurement vector, and ΦARM�N is
the measurement matrix KoMoNð Þ [1–3]. One fundam-
ental problem in CS is to recover x from y based on the prior
information of signal sparsity.

The recovery algorithms have received significant atten-
tion since the introduction of CS. Ref. [4] showed that the
sparse signal can be stably recovered under some condi-
tions on Φ by solving an l1-minimization problem. Other
approaches, including subspace pursuit [5], orthogonal mat-
ching pursuit (OMP) [6], compressive sampling matching
pursuit [7], and iterative hard thresholding [8], are also rep-
orted thereafter. Among them, OMP is a popular greedy
algorithm, which has been studied widely. For the noiseless
case in (1), [9,10] presented the conditions of exact recovery
of x when OMP is used. When some additive noise exists in
the system, which is assumed to be unknown and has a
bounded norm, [11,12] analyzed the recovery accuracy of
OMP. These existing theoretical results are mostly devel-
oped by using the tools of coherence [13] and restricted
isometry property (RIP) [14].
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A variety of application scenarios motivate the researches
to recover not just a single signal, but many correlated sig-
nals at the same time, which is called the joint recovery
problem. It arises in many applications including magne-
toencephalography [15], source localization [16], array pro-
cessing [17], cognitive radio communications [18]. One typ-
ical scenario is to identify a common support shared by a set
of signals from their measurement vectors, where the sup-
port is the set containing the locations of all nonzero entries
in the signals [17]. When the measurement matrices are
common for arbitrary signals, this problem is known as mul-
tiple measurement vectors (MMV).

There have been many studies on the MMV problem, see
the discussions in [19–31] and the references in these papers.
In terms of recovery algorithms, the methods include convex
optimization [20–22], greedy pursuit [23–27], and sparse
Bayesian learning [28,29]. In terms of theoretical guarantees,
[20,22] analyzed the worst-case performance of MMV pro-
blem. However, the results did not show any performance
gain with joint recovery. It is due to the reason that these
results apply to all possible input signals, and the case of
xj ¼ x corresponds to no gain. In contrast, [24,30,31] pro-
vided the average-case analysis, which showed that fewer
measurements are required when compared with separate
recovery.

Among the literature onMMV, simultaneous OMP (SOMP),
which can be regarded as an extension of OMP from one
signal to multiple signals, is often used to perform joint
recovery. In the context of MMV, SOMP is investigated when
the measurement matrices for each signal (fΦjg) are identical
[24,25]. However, the case of different Φj is common in
practical application. For example, to reduce the cost at the
nodes implementing CS operation, it is advisable to generate
Φj independently without communication among them. Cur-
rently, the joint recovery problem when fΦjg are different is
seldom studied. The authors in [26,27] discussed this case,
and proposed the corresponding reconstruction algorithms.

The measurement matrices are generally assumed to be
known a priori in standard CS, see the analysis in [9–14,
24,25]. However, it is not always the case in practical situa-
tions. When various errors and fluctuations exist in the
system, the general perturbations should be considered,
which involve a perturbed measurement vector and a pert-
urbedmeasurement matrix. The former, i.e., the measurement
noise, has been discussed widely in many existing papers. For
the latter, few works have been done. Refs. [32–36] consid-
ered the case of a single signal. Ref. [32] discussed the effect of
a general matrix perturbation and showed that the recovery
error of l1-algorithm grows linearly with the perturbation
level. Refs. [33] and [34] presented the degradation of signal
recovery when perturbation exists due to the basis mismatch.
Ref. [35] considered a structured matrix perturbation and
showed that the recovery error of l1-minimization is at most
proportional to the measurement noise level. Ref. [36] derived
the RIP-based recovery conditions of OMP when matrix
perturbation is presented at either the encoder or decoder.
Ref. [37] extended the case in [36] to the case of multiple
sparse signals that share a common support, where it
analyzed the OMP algorithm for MMV under general pertur-
bations, and showed that the recovery of the support is
guaranteed under certain conditions.

This paper is on the perturbed CS problem when SOMP is
used to perform joint recovery for the case of different mea-
surement matrices. The model to represent the correlation
among signals is the one where the locations of the K largest
magnitude entries in each signal are identical, and the set of
corresponding position indices is defined as the support Ω.
For an almost sparse signal ensemble, where the differences
among each signal are not very large, we derive the RIP-based
conditions to guarantee that Ω can be exactly recovered. The
error bound between each signal and its reconstruction is also
derived. Furthermore, we extend the analysis to the signals
that are strong-decaying, where the decay of entries in each
signal is sufficiently strong, and derive the corresponding con-
ditions for support recovery. When compared with the results
in [37], our results enjoy three advantages. First, the analysis
in this paper applies for the case of different measurem-
ent matrices. Second, we consider the almost sparse signals,
which generalizes the case of exact sparse signals in [37].
Third, as shown in the experiments in Section 4, our results
provide an improved bound when compared with the one
in [37].

The rest of the paper is organized as follows. Section 2
gives the backgrounds of CS and perturbed CS. Section 3
develops the RIP-based conditions of SOMP in the per-
turbed scenario. Some experiments are given in Section 4.
Section 5 discusses the derived results and concludes this
paper. Finally, some mathematical proofs are provided in
Appendices.

Notation: ‖A‖2, ‖A‖F and ‖A‖ Kð Þ
2 denote the spectral

norm, Frobenius norm and the largest spectral norm taken
over all K-column submatrices of the matrix A, respec-
tively. For a vector v, vðiÞ means its ith entry. ‖v‖1 ¼PN

i ¼ 1 vðiÞ
�� ��, and v;uh i ¼ PN

i ¼ 1 vðiÞuðiÞ, where vARN and
uARN . suppðvÞ stands for the support of a sparse signal v.
vΛ denotes the vector obtained by selecting the entries of
v indexed by Λ, and AΛ is the matrix obtained by selecting
the columns of A indexed byΛ. For a matrix ensemble fAjg,
Aj;Λ is the matrix containing the columns of Aj indexed by
Λ, and vj;Λ for a vector ensemble fvjg is defined likewise.

2. Backgrounds

2.1. Compressed sensing

Compressed sensing deals with the acquisition and
recovery of sparse signals from a small number of random
linear projections. It is well known that x can be recon-
structed by solving the l1-minimization problem [14]

min
x

‖x‖1s:tΦx¼ y:

To study the performance of CS recovery algorithms, RIP is
used as an important tool [14]. We say that a matrix Φ
satisfies the RIP of order K if

1�δK
� �

‖x‖22r‖Φx‖22r 1þδK
� �

‖x‖22

for every K-sparse signal x with the restricted isometry
constant (RIC) being 0oδK o1. It has been shown that x
can be perfectly recovered by solving l1-minimization pro-
blem if δ2K o

ffiffiffi
2

p
�1 [14], which is further improved to

δ2K o0:4931 in [38].
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