

Alzheimer's & Dementia 11 (2015) 710-717

Review Article

Vascular contributions to cognitive impairment and dementia including Alzheimer's disease

Heather M. Snyder^{a,*}, Roderick A. Corriveau^b, Suzanne Craft^c, James E. Faber^d,

Steven M. Greenberg^e, David Knopman^f, Bruce T. Lamb^g, Thomas J. Montine^h,

Maiken Nedergaardⁱ, Chris B. Schaffer^j, Julie A. Schneider^k, Cheryl Wellington^l,

Donna M. Wilcock^m, Gregory J. Zipfelⁿ, Berislav Zlokovic^o, Lisa J. Bain^p, Francesca Bosetti^b,

Zorina S. Galis^q, Walter Koroshetz^b, Maria C. Carrillo^a

^aMedical & Scientific Relations, Alzheimer's Association, Chicago, IL, USA

^bNational Institute on Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA

^cDepartment of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA

^dDepartment of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA

^eDepartment of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

^fDepartment of Neurology, Mayo Clinic, Rochester, MN, USA

^gDepartment of Neurosciences, Cleveland Clinic, Cleveland, OH, USA

^hDepartment of Pathology, University of Washington, Seattle, WA, USA

ⁱDivision of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, NY, USA

^jDepartment of Biomedical Engineering, Cornell University, Ithaca, NY, USA

^kDepartments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA

¹Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada

^mDepartment of Physiology, University of Kentucky, Lexington, KY, USA

ⁿDepartments of Neurological Surgery and Neurology, Washington University, St Louis, St Louis, MO, USA

^oDepartment of Physiology, University of Southern California, Los Angeles, CA, USA

^PIndependent Science Writer, Elverson, PA, USA

^qNational Institute of Heart, Lung and Blood, National Institutes of Health, Bethesda, MD, USA

AbstractScientific evidence continues to demonstrate the linkage of vascular contributions to cognitive
impairment and dementia such as Alzheimer's disease. In December, 2013, the Alzheimer's Associ-
ation, with scientific input from the National Institute of Neurological Disorders and Stroke and the
National Heart, Lung and Blood Institute from the National Institutes of Health, convened scientific
experts to discuss the research gaps in our understanding of how vascular factors contribute to Alz-
heimer's disease and related dementia. This manuscript summarizes the meeting and the resultant
discussion, including an outline of next steps needed to move this area of research forward.
© 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

Keywords: Alzheimer's disease; Dementia; Biomarkers; Animal models; Vascular dementia; Small vessel disease

1. Introduction

A recent scientific statement from the American Heart Association (AHA) and American Stroke Association

E-mail address: hsnyder@alz.org

highlighted the significance of vascular contributions to cognitive impairment and dementia [1], coined "VCID" here and alternatively referred to as vascular dementia and/or vascular cognitive impairment and/or vascular contributions to dementia. This link between ischemic vascular disease and dementia is clinically relevant as the former is largely preventable by optimizing the identification and management of vascular risk factors. The concept for

http://dx.doi.org/10.1016/j.jalz.2014.10.008

1552-5260/© 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

^{*}Corresponding author. Tel.: +1-312-335-5184; Fax: +1-866-875-2553.

VCID emerged as a leading priority at the National Institutes of Health (NIH) National Institute of Neurological Disorders and Stroke (NINDS) hosted Stroke Research Priorities Meeting [2] and also at the 2013 Alzheimer's Disease-Related Dementia (ADRD) Summit. The ADRD Summit set two major research priorities for white matter and grey matter small vessel VCID research over the next 5-10 years including: developing experimental models to identify mechanisms and novel targets and encouraging basic science investigation of the impact of AD risk factors on cerebrovascular function and vice versa; and the development of biomarkers for clinical research and trials [3,4]. The Alzheimer's Association, with scientific input from the NINDS and the National Heart, Lung and Blood Institute (NHLBI) at NIH, convened a panel of cross-disciplinary experts in Chicago, IL, on December 17, 2013 to determine the state of the science and identify key gaps, including unanswered research questions, which when addressed, are predicted to translate into improved clinical outcomes related to small vessel VCID. This manuscript summarizes the proceedings of this discussion.

2. State of the science

Decades of data, including landmark work from the Honolulu Asia Aging Study [5], the Rotterdam Study [6], and the Religious Orders Study and Memory and Aging Project (ROS/MAP) [7,8] have provided significant insight into potential links of vascular factors to dementia, including AD. An important risk factor for dementia includes lacunar and larger cerebral infarcts in the brain that are pathologic markers of clinical or subclinical stroke [9–11]. Others have subsequently shown that ischemic brain injury, commonly detected in pathology as macro- and microinfarcts and vessel disease, e.g. atherosclerosis, arteriosclerosis, and cerebral amyloid angiopathy (CAA) (Table 1), are highly prevalent in older persons and are independent risk factors for cognitive dysfunction and dementia [6,12–17]. Over the past 50 years the control of vascular risk factors, especially hypertension, has led to a major decline in the annual risk of stroke. Whether improved control of vascular risk factors has translated to decreased dementia risk is not known but has been suggested [18].

The most common etiology of dementia in older persons includes both mixed vascular and AD pathologies that become even more common as aging increases as both vascular and AD pathologies accumulate over time [19,20]. For example, in the longitudinal ROS/MAP, over half of the individuals with AD had a combination of both AD and vascular pathologies [7,8]. Importantly, the deleterious effect of vascular pathologies combined with AD pathology leads to increased likelihood of dementia; this is true for both large infarcts (commonly manifested as stroke) and microinfarcts in individuals with similar levels of AD

Table 1

Brain vascular injuries and disease; Table 1 summarizes ascular tissue injury and vessel disease, based on pathology, microscopic visualization and radiographic description

Vascular tissue injury	Pathologic size	Gross or microscopic visualization	Radiographic description
Macroinfarcts (also gross infarcts)	~ ≥ 1 mm (random missing; ≥1 mm toward 5 mm)	Gross	 ≥3 mm on conventional MRI imaging (3 mm to 15 mm lesion CSF-density with FLAIR- hyperintense rim defined as lacune of presumed vascular origin) [76]
Microinfarcts	100 μm to 3 mm (missing based on sampling protocol; mean < 1 mm)	Microscopic	Mostly undetectable. Cortical microinfarcts 1–3 mm may be visible as FLAIR-hyperintense lesions [77], recent microinfarcts may be visible as DWI- hyperintense lesions. [72]
Primary intraparencymal hemorrhages	≥5 mm	Gross	≥5–10 mm
Microbleeds	≤5 mm	Gross or microscopic	2-10 mm on T2*-weighted MRI [76]
White matter hyperintensity of presumed vascular origin	NA	Gross or microscopic	Hyperintense on T2-weighted MRI [76]
Vessel disease	Affected vessel	Gross or microscopic visualization	Radiographic description
Atherosclerosis	Arteries	Gross (large/medium arteries) or microscopic (medium/small arteries)	Angiography Vascular Doppler examination Carotid intimal-media thickness
Arteriolosclerosis	Arterioles	Microscopic	Not directly visible
Cerebral Amyloid angiopathy	Arterioles Arteries Capillaries	Microscopic	Amyloid ligand imaging [78,79]
Blood Brain Barrier	Capillaries (as part of neurovascular unit)	Electron microscopy	Dynamic contrast-enhanced MRI [80]

Abbreviations: MRI, magnetic resonance imaging; CSF, cerebrospinal fluid; FLAIR, fluid-attenuated inversion recovery; DWI, diffusion-weighted MRI.

Download English Version:

https://daneshyari.com/en/article/5624266

Download Persian Version:

https://daneshyari.com/article/5624266

Daneshyari.com