
Jeffrey's divergence for state-space model comparison

C. Magnant a,b,n, E. Grivel b, A. Giremus b, B. Joseph a, L. Ratton c

a Thales Systemes Aeroportes S.A. 25, Avenue Gustave Eiffel, 33600 Pessac, France
b Université de Bordeaux—Bordeaux INP ENSEIRB-MATMECA—IMS—UMR CNRS 5218, 351, Cours de la Libération, 33405 Talence, Cedex, France
c Thales Systemes Aeroportes S.A. 2, Avenue Gay-Lussac, 78990 Elancourt, France

a r t i c l e i n f o

Article history:
Received 15 July 2014
Received in revised form
26 December 2014
Accepted 8 February 2015
Available online 18 February 2015

Keywords:
Kalman filtering
Model selection
Jeffrey's divergence
Classification
Tracking

a b s t r a c t

Optimal filters such as Kalman filters are used in a wide range of applications from speech
enhancement to biomedical applications. They are based on an a priori state-space model
describing a dynamic system. If this model is not well-suited, the accuracy of the state vector
may be poor. Therefore, several estimators based on different models can be combined.
However, state-space models that are dissimilar enough must be chosen. To our knowledge,
there are no guidelines to select them, we hence address this issue in this paper. Given an initial
model set, our aim is to determine subsets of similar models by using Jeffrey's divergence
between the distributions of the state-vector time paths based on the different models. Our
approach operates with the following steps: the so-called dissimilarity matrix composed of
Jeffrey's divergences between model pairs is created. Then, this matrix is transformed to get the
same properties as a correlation matrix and an eigenvalue decomposition is performed.
Subsequently, we propose an interpretation of the predominant eigenvalues which is then used
to deduce the number of model subsets and their cardinals. A classification algorithm can then
be considered to determine which models belong to which subsets.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the field of signal processing, a common problem is to
recursively estimate a hidden process fxngnAN from an obs-
erved process fyngnAN. In the framework of radar processing,
once a target has been detected, tracking requires estimating its
position in a specific coordinate system by using noisy radar
information. Another example is GPS navigationwhere the aim
is to locate the GPS receiver given the positions of the satellites
in view and the noisy pseudo-range measurements to the
satellites. Once again, the GPS positions have to be estimated. In
video sequences for traffic control, moving objects have also to
be tracked. To address the above issues, Bayesian approaches
such as Kalman filters [1] and particle filters [2] are commonly

used. Their performance in terms of location accuracy is mainly
related to the choice of the motion model that is a priori used
[3]. Although a constant velocity (CV) motion [4,5] often
describes the motion of a tanker for instance, some model
parameters such as the variance of the measurement noise are
not necessarily known. Therefore, some model parameters
have to be adjusted [3]. When tracking maneuvering targets,
the motion is inherently uncertain. The motion class can
change over time; for instance, the object can first follow a
CV model [4,5], then a uniformly accelerated motion (UAM)
model [4,5], then a Singer model [6]. In addition, kinematic
parameters such as the target-jerk variance, the acceleration or
the velocity may vary over time. In these cases, using a single
estimator based on a unique state1-space representation (SSR)
of the system [7] leads to poor performance.
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1 A state of a system stores the current values of the internal elements of the
system. The state variables that are in the state vector depend on the
application. When dealing with a motion model, the state vector can be
composed of the target position, the velocity and the acceleration.
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More generally in signal processing, defining the SSR of the
system can be a difficult task. To avoid the above constraints,
multiple-model (MM) based methods can be considered.
Three generations exist the first of which uses a finite number
of estimators associated to different SSRs, but there is no
interaction between them. In the second generation which
gave rise to the interactive multiple model (IMM) [8], a coop-
eration strategy is included at the input of the MM structure
[9]. Although the IMM has become popular over the last
decades, defining the number of models to be used and
selecting their SSRs are still open topics. Usually, the user aims
to choose dissimilar models to ensure diversity [5]. Never-
theless, it was shown in [10] that using too many models does
not necessarily improve the performance of a single-Kalman-
filter based estimator. In the third generation, themain feature
is that the model number varies over time. This leads to the
variable-structure IMM (VS-IMM) and its variants [11]. In that
case, unlikely models are continually removed while more
relevant are activated. Therefore, given an initial set of
representative models of the system, the user has to define
model subsets and then deduce adjacencies2 betweenmodels.
Evaluating similarities between models thus plays a crucial
role in this lastest generation. A preliminary study to classify
models is hence of interest.

In this paper, unlike the approaches based on the Akaike
informationcriterion (AIC) [12,13], the Bayesian information
criterion (BIC) [14] and the divergence information criterion
(DIC) [15], our purpose is not to develop a data-driven
selection of the system's SSR. The originality of our work is
that the dissimilarity is addressed in terms of distributions on
the whole paths and not in terms of the paths themselves.
Indeed, we compare models and not some of their realiza-
tions. For this purpose, our approach is based on Jeffrey's
divergence (JD) which is the symmetric version of the Kull-
back–Leibler (KL) divergence [16,17]. Note that the KL diver-
gence has already been proposed to compare Gaussian
processes as described in [18], but only asymptotic expres-
sions are obtained. Recent works also derive an expression of
this divergence for the specific cases of first-order moving-
average (MA) models [19] and Markov sources [20]. Our work
addresses the more general case of linear Gaussian state
spaces. In [21], we derived a recursive expression of the JD
between the joint distributions of the state vector at succes-
sive instants based on two distinct models in order to
measure the degree of mismatch between both state models.
In this paper, our contributions are the following:

1. We aim to evaluate the dissimilarities between two or
more state models. Thus, considering a given set of models,
JDs between models that are chosen pairwise can be
computed and organized in a matrix form to create the
so-called dissimilarity matrix [22]. However, the number of
models to be compared can be high. In that case, there
are too many JDs to be studied simultaneously. There-
fore, referring to various results analyzing the correlation
matrices,3 the dissimilarity matrix is transformed to obtain

the same properties as a correlation matrix. Then, at each
instant, the eigenvalues of the resulting matrix are com-
puted in order to study how they evolve over time. Given
an interpretation of these eigenvalues, we deduce the
number of model subsets and their cardinals from the
initial model set. Subsequently, a classification algorithm is
used to determine which models belong to which model
subsets.

2. Examples are given in the field of target tracking but
others could be considered. These examples can be
useful when selecting a reduced number (e.g. 2–3) of
competing dissimilar models, before using optimal
filters in an MM structure.

The outline of this paper is as follows: in Section 2,
background information is recalled. More specifically, the
linear SSR of the system is introduced. In Section 3, we derive
the recursive expression of the JD between two state models.
In Section 4, we extend our approach to a set of two or more
models. In Section 5, we analyze its relevance in various
cases. A toy example consists in comparing two random-walk
processes. Then, we apply our method to object tracking. For
this latter application, the SSRs for the UAM and the Singer
motion are recalled and both model families are compared.
Finally, starting from a given initial model set composed of
both previous model families, model subsets are determined
and the relevance of this classification is then studied
regarding an MM-based algorithm. Conclusions and perspec-
tives are finally drawn in Section 6.

2. Background

2.1. About the state-space representation

In the fields of control and signal processing, Bayesian
recursive approaches can be used. They are based on the SSR
of the system, which is a mathematical model of the dynamic
system [24,25]. It usually consists of two equations4: one
related to the evolution model, whereas the other describes
the relationship between the state vector and the observation
vector. In the following, let us focus on the linear case. If M
models are considered, the ith model is defined as follows:

xkþ1 ¼Φixkþui
k ð1Þ

yk ¼Hixkþbi
k ð2Þ

where xk is the state vector at time k of size l and Φi is the
transition matrix. The model noise ui

k is zero-mean white and
Gaussian with covariance matrix Qi. Here, Qi is assumed to be
invertible. yk denotes the observation and Hi the observation
matrix. In addition, bi

k is a zero-mean Gaussian white noise
with covariance matrix Ri and is uncorrelated with ui

k.
Note that an alternative probabilistic formulation of

Eqs. (1) and (2) is5

piðxkþ1jxkÞ ¼N ðΦixk;Q
iÞ ð3Þ

2 A model is said adjacent to another if the transition probability from
this model to the other is different from zero.

3 Namely the Karhunen–Loeve transform, the subspace decomposition
methods based on the eigenvalue decomposition of the correlationmatrix [23].

4 When dealing with H1 filtering [26], a third equation is considered,
namely zk ¼ Lixk , where Li denotes a matrix combining state variables.

5 N ðm;CÞ denotes the Gaussian distribution with mean m and covar-
iance matrix C.
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