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a b s t r a c t

This paper presents a new multi-parameter regularization model for image restoration
(IR) based on total variation (TV) and wavelet frame (WF). On one hand, the Rudin–Osher–
Fatemi (ROF) model using TV as the regularization term has been proven to be very
effective in preserving sharp edges and object boundaries which are usually the most
important features to recover. On the other hand, adaptively exploiting the regularity of
natural images has led to the successful WF approaches for IR. In this paper, we propose a
novel model that combines these two approaches together to restore images from blurry,
noisy and partial observations. Computationally, we use the alternative direction method
of multiplier (ADMM) to solve the new model and provide its convergence analysis in the
appendix. Numerical experiments on a set of IR benchmark problems show that the
proposed model and algorithm outperform several state-of-the-art approaches in terms of
the restoration quality.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Restoration from noisy, blurry and partial observations is a
fundamental task in image processing (IP) ranging from
computer sciences, electronic engineering and remote sen-
sing to biology and medical sciences. Mathematically, the
observation model is as follows:

y¼ Kxþη ð1Þ

where y, xARM�N are observed and target images, respec-
tively, K is a linear corruption operator that maps RM�N into
RM�N , and ηARM�N is the zero-mean white Gaussian noise
with variance σ2. Image restoration (IR) is an inverse problem
aiming at recovering x from the corrupted observation image
y. There are several approaches to tackle this issue, to name
just a few, statistics [1], Fourier or wavelet transforms [2], and
variational analysis [3,4].

It is well known that the process to recover x from y is
ill-posed in the sense that the restoration results may not
be continuously dependent on the observation error [4].
A widely used method to handle this problem is resorting
to regularization, where the underlying image x is approxi-
mated by the solution of

min
x

1
2

y�Kx
�� ��2

2þλR xð Þ: ð2Þ

The first term in (2) incorporates the measurement y and
the second term is the regularization term which contains
the prior information of the underlying solution. The
regularization parameter λ40 controls the tradeoff bet
ween these two terms.

Classical Tikhonov regularization [5] using RðxÞ ¼ JDxJ22
with D to be a local difference operator, however, tends to
make images over smooth and fail to preserve sharp edges.
The ROF model [6,7] using total variation (TV) as a regularizer
has been shown a great success in preserving the most
important features in images such as sharp edges and object
boundaries. However, the well known drawback of TV based
methods is to create staircasing phenomenon in the flatten
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zones and small object corners and lead to the loss of image
contrasts [8–11].

There are several higher-order variational regularization
based models that can suppress the staircasing effect created
by TV-based models. The first type is replacing the TV term
with higher-order regularizes directly [12–15] to keep the
smooth parts of the image. The second category uses multi-
parameter regularization models based on TV and other
regularizer that incorporates the high order TV [16] or
curvature information of the level set of the target image
[17,18]. Another kind is treating the underlying image as the
sum of cartoon part measured by the TV norm while the
flatten part measured by a higher-order norm, such as the
inf-convolution TV based model [3], the fourth order based
models [10,11], the total generalized variationmodel [19], and
the two framelet-based models [20]. The models mentioned
above can remedy the drawbacks of TV based model to some
extent. However, it also needs some efforts to improve them
both theoretically and computationally. Mathematically, the
first two kinds of approaches assume higher regularities prior
of the target image which may exclude the edges unfortu-
nately. Numerically, it is quite challenging to develop fast
solvers with theoretical guarantee to minimize the energy
functionals involving high order derivatives since the related
Euler–Lagrange equations are often fourth order.

Sparse representation is another hot topic in IR and other
IP fields [21]. In general, most natural images are usually
(approximately) sparse under some dictionaries, e.g., Fourier,
wavelet, contourlet, curvelet, and WF. In order to make full
use of the sparsity prior information, the redundant diction-
aries such asWF are preferred in the process of IP. Due to that
different framelets have different orders of vanishing
moment, the magnitude of framelet coefficients of the image
can adaptively indicate the regularity of the underlying
image. Therefore, the framelet-based synthesis, analysis, and
balanced variational models can significantly improve IR
quality [20,22–30]. The authors in [30] proposed a new
scheme, which simultaneously maximizes the sparsity of
the blur kernel and the sparsity of the clear image, i.e., using
the curvelet system for the blur kernel while framelet system
for the latter. Recently, it has been shown that several
important variational PDE-based image regularization models
can be interpreted as a certain kind of framelet regularization
with specified WFs [20,31,32]. Also, there are many other
items that can be used to improve the quality of the IR
algorithms, such as the nonlocal information of the image
[33], coupled dictionary [34], and multiple images [35].

Inspired by the idea that framelet transforms play a role of
multi-scale differential operator adaptively, we propose a
multi-parameter regularization IR model based on TV and
framelet to preserve sharp edges and to avoid staircasing
simultaneously. To be precise, we use TV regularizer to keep
sharp edges and choose a proper framelet whose coefficient
can adaptively detect higher regularity zones and then can
measure the smoothness of the underlying image, which is
the first main contribution of this paper. We should point out
that our newly proposed model is not only different from the
ones aiming at decomposing the original image into two
parts and using different regularization term to measure
them [3,10,11,19,20] but also different from the models
utilizing multi-parameter regularization combined TV with

higher-order regularizer [16–18]. The authors in [20] give a
scheme for restoring image, which simultaneously use total
variation and framelets to be the regularization schemes. The
difference between our algorithm and this scheme is that
during their method, the underlying image is firstly divided
into two parts, then enforce two regularization items to the
remaining two parts while our algorithm does not need to
divide the image, instead of which, total variation and
framelets are directly acting on the whole image in TV frame.
We also noticed that there are several works that hybrid TV
or higher-order TV with certain wavelet regularization to
preserve image details and textures [27,28,36–39]. Our newly
proposed TV-analysis based model also differs from them
since they are developed from different motivations using
different wavelets or just use the synthesis model.

Numerically, we adopt the alternative direction method
of multiplier (ADMM) to develop a fast and stable algo-
rithm and establish its convergence analysis, which is the
second main contribution of this paper. The ADMM is first
introduced in [40,41] and is been shown to have the
advantages of notable stability and high rate of conver-
gence, as a result of which, it is now widely used for the
minimization of convex functionals under linear-equality
constraints. Here, similar to [42], we use the ADMM as a
single and efficient tool to derive the explicit reconstruc-
tion algorithm for IR. After bringing in two auxiliary
variables, we first transform this model into a new con-
strained problem and then use the variable splitting
technique to transform the resulting constrained problem
into a different unconstrained problem. The obtained
unconstrained problem is then solved by the ADMM
efficiently. It is shown in the simulation experiments that
the newly proposed algorithm is very effective and
efficient in IR.

The rest of this paper is organized as follows. In Section 2,
we review the WF system and image representation. The
proposed new model based on framelet and TV is introduced
in Section 3, along with the corresponding ADMM algorithm
in detail. In Section 4, we conduct several numerical experi-
ments to demonstrate that both the new model and the
ADMM algorithm are effective and efficient. Concluding
remarks and future works are discussed in Section 5 while
the proof of the convergence theorem of our newly proposed
algorithm is given in Appendix A.

2. The WF and image representation

In this section, we will briefly review the concept of
tight WFs. As for the details about how to construct the
WF and the detailed frame theory, please see [22–
24,26,43] and the references therein.

A countable set X � L2ðRÞ is called a tight frame if

f ¼
X
ψ AX

〈f ;ψ〉ψ ; 8 f AL2ðRÞ

where 〈�; �〉 is the inner product of L2ðRÞ. For a given
Ψ : ¼ ψ1;ψ2;…;ψn

� �� L2ðRÞ, the wavelet system is
defined by the collection of the dilations and the shifts
of Ψ as

XðΨ Þ≔ 2j=2ψ ið2j � �kÞ:1r irn; j; kAz
n o

ð3Þ
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