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In this paper, a novel algorithm, called the general similar sensing matrix pursuit (GSSMP),
is proposed to deal with the deterministic sensing matrix with high coherence. First, the
columns of the sensing matrix are divided into a number of similar column groups based
on the similarity distance. Each similar column group presents a set of coherent columns
or a single incoherent column, which provides a unified frame work to construct the
similar sensing matrix. The similar sensing matrix is with low coherence provided that the
minimum similar distance between any two condensed columns is large. It is proved that
under appropriate conditions the GSSMP algorithm can identify the correct subspace quite
well, and reconstruct the original K-sparse signal perfectly. Moreover, we have enhanced
the proposed GSSMP algorithm to cope with the unknown sparsity level problem, by
testing each individual contributing similar column group one by one to find the true
vectors spanning the correct subspace. The simulation results show that the modified
GSSMP algorithm with the contributing similar column group test process can estimate
the sparse vector representing the radar scene with an unknown number of targets
successfully.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

large) is to be reconstructed from a small number M of
linear measurements with K <M < N. K-sparse signals are

Compressed sensing has received considerable atten-
tion recently, and has been studied in diverse fields, e.g.,
image processing [ 1], underwater acoustic communication
[2], wireless communication [3] and radar [4-6]. The
central goal of compressed sensing is to capture attributes
of a signal using very few measurements. In most work to
date, this broader objective is exemplified by the impor-
tant special case in which a K-sparse vector x e ®" (with N
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the signals that can be represented by K significant
coefficients over an N-dimensional basis. This can be
compactly described by

y=®x+e, @))]
where y ¢ %™ denotes a measurement vector, ® represents
an M x N sensing matrix, and e € RV is an arbitrary noise
vector with llell, <e, where e is the bound on the noise
magnitude.

In compressed sensing, one of the well-studied condi-
tions on the sensing matrix which guarantees stable
recovery for a number of reconstruction algorithms is the
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restricted isometry property (RIP) [7,8]. However, in prac-
tice, it is very hard to check whether a sensing matrix
satisfies RIP or not.

Coherence, the maximal correlation between two col-
umns in a sensing matrix, is also a well-known perfor-
mance measure for sensing matrices. For a matrix @ with
columns ¢, @, ..., py, the coherence of @ is defined as

o] pjl

D) = max _
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Coherence plays a central role in the sensing matrix
construction, because small coherence implies the RIP [9].

In the early work of compressed sensing, the entries of
the sensing matrix are generated by an independent
identically distributed (i.i.d.) Gaussian or Bernoulli process,
or from random Fourier ensembles [10-12]. The role of
random measurement provides the worst case perfor-
mance that guarantees in the context of an adversarial
signal/error model. Random sensing matrices are easy to
construct, and are 2K-RIP with high probability [12].
However, the random matrices are often not feasible for
real-world applications due to the cost of multiplying
arbitrary matrices with signal vectors of high dimension,
and there is no guarantee that a specific realization works
perfectly for the reconstruction.

With the application area of compressed sensing
extended to wider fields, the random sensing matrix is
being replaced by the deterministic sensing matrix. Recent
research has focused on the construction of the determi-
nistic matrix which often exhibits considerable structure
[13]. In [14], the authors propose a new deterministic low-
storage construction of compressive sampling matrices
based on classical finite-geometry generalized polygons.
This can be seen as a foundation on deterministic sensing
matrices and reconstruction. The connection between
sensing matrices and coding theory can be traced to [15],
where the theory of finite classical generalized polygons is
utilized to derive and study low-density parity-check
(LDPC) codes. Among the approaches for deterministic
matrix construction, the Vandermonde matrices seem to
be good options, since any K columns of an M x N
Vandermonde matrix are linearly independent. However,
when N increases, the constant &y rapidly approaches 1
and some of the M xK submatrices become ill-
conditioned [16]. In [17], the second order Reed-Muller
codes are used to construct bipolar matrices. However,
they lack a guarantee on the RIP order. In [18], the authors
propose a series of deterministic sensing matrices, the
binary, bipolar, and ternary compressed sensing matrices
which satisfy the RIP condition.

The key concept of coherence is extended to pairs of
orthonormal bases. This enables a new choice for the
sensing matrices: one simply selects an orthonormal basis
that is incoherent with the sparsity basis, and obtains
measurements by selecting a subset of the coefficients of
the signal in the chosen basis [19]. This approach has
applications in radar systems [6,20], where an additional
sensing matrix H is introduced and the received signal is
compressed further by making nonadaptive, linear projec-
tions of the direct data sampled at the Nyquist frequency.

However, neither of these algorithms mention the hard-
ware implementation of the additional sensing matrix,
which is very complex and expensive.

In this work, we focus on the deterministic sensing
matrix built directly on the real acquisition systems, e.g.,
radar systems [21], and sensor array systems [22], which
have been widely used in underwater acoustics and wire-
less communications. In the context of phased array radar
system based on space time adaptive processing (STAP)
technique [21], the sensing matrix is composed of spatial-
Doppler steering vectors in columns, which is determinis-
tic in nature. As the resolution of the angle-Doppler plane
becomes finer, the coherence between the columns of the
sensing matrix increases, thereby degrading the recon-
struction reliability and performance. Similarly, for the
sensor array system [22], the sensing matrix is composed
of DOA steering vectors in columns. Increasing the resolu-
tion of the DOA angle plane leads to finer gridding, which
increases the correlation between the basis elements of
the sensing matrix.

Only a few papers have been published on the deter-
ministic sensing matrix with high coherence [23-25].
Sparse Bayesian learning (SBL) algorithm [26-28] is cap-
able of handling the sensing matrix with high coherence,
and has been applied in the passive SAR radar system to
improve the imaging resolution [23]. In [24], a novel
approach based on the SBL algorithm is proposed for
sparse nonstationary signal reconstruction using multiple
windows.

In our previous work [25], a novel algorithm, called the
similar sensing matrix pursuit (SSMP), is proposed to cope
with the deterministic sensing matrix with high coher-
ence. The proposed algorithm builds a similar sensing
matrix based on the original sensing matrix, which has
low coherence. A subspace pursuit (SP) algorithm is then
used to find a rough estimate of the true support set,
which contains the indices of the columns that contribute
to the original sparse vector. Three kinds of structures of
the estimated support set are considered, and three
individual refined estimation processes are carried out
under these three conditions. The proposed algorithm
obtains much better performance while coping with a
deterministic sensing matrix with high coherence, com-
pared with the SP and basis pursuit (BP) algorithms.
However, the proposed algorithm is heuristic in nature,
which implies that the original K-sparse vector can be
reconstructed based on the similar sensing matrix with
high probability, and there is no rigorous proof for this
conclusion. Moreover, two thresholds have to be set in the
algorithm. One threshold is used to distinguish the inco-
herent columns from the coherent columns, and the other
is used to divide the coherent columns into separate
similar column groups. The setting of the two thresholds
is very tight, which limits the application area of the SSMP
algorithm. This method is complex and impractical for
real-wold problems, since the incoherent and coherent
columns are treated separately and three individual
refined estimation processes under three different condi-
tions have to be considered.

This paper presents a rigorous version of the SSMP
algorithm in a unified framework, which is named as general
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