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a b s t r a c t

The thresholding methods based on the generalized iteratively reweighted least squares
(IRLS) iteration are discussed under the complex-valued condition in this paper. A new
thresholding function (Double-Threshold Sigmoid (DTHS) function) and two associated
algorithms (DTHS-1 and DTHS-2) are proposed herein, and their convergence perfor-
mances are discussed in detail. It is shown that the generalized IRLS algorithm is unbiased
if the thresholding penalty can eliminate the undesired perturbation term added on the
correlation matrix of the measurement matrix. Compared with the others, the new
algorithms are endowed with stability and insensitivity with respect to the regularization
parameter by selecting some sound upper thresholds and dividing the iteration proce-
dures into the degraded stage and DTHS stage respectively. Further analyses show that the
DTHS-1 algorithm is suitable to deal with the sparse and continuous problems for both of
the i.i.d. random matrix and under-resolution PSF matrix. The noise performance of the
DTHS-1 algorithm is always superior to that of the IRLS algorithm, especially in the face of
the under-resolution PSF matrix.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In many fields, the signal recovery problem can be molded
as solving a system of linear equations Ax¼y, where, A is
known as the measurement matrix or sensing matrix, x is the
recovered vector and y is the observation vector. When the
measurement matrix A is invertible, x can be solved via the
inverse of A; when the linear equations system is overdet-
ermined, the least square (LS) solution is widely adopted.
When the system of linear equations is underdetermined or
ill-conditioned, however, there is more than one solution, and
some further constraints are necessary.

The sparse recovery aims to find out the sparsest solution
for an underdetermined problem, which is typically described
as an optimization problem: min ‖x‖0; s:t:; ‖Ax�y‖22rε,
where, ‖x‖0 denotes the L0 (quasi) norm. Unfortunately, this

optimization problem is proved to be NP-hard [1,2]. As a result,
a series of endeavors to find out some suboptimal solutions are
carried out in recent years.

The orthogonal matching pursuit (OMP) [3–8] approach
heuristically solves L0 problem by iteratively reducing the res-
idual error with a minimum increment of the nonzero comp-
onents (supports) based on the greedy strategy, which can
efficiently find the sparse solution. Further research shows
that when the mutual coherence [9–11] or restricted isometry
constant [12,13] is small and the recovered vector is sparse
enough, the OMP algorithm can always obtain the desired
sparse solution. Besides of the standard OMP, there are some
modifications, such as the stagewise OMP [14], which have
been researched in recent years.

Another popular strategy is approximating the L0 norm by
L1 norm, i.e., min ‖x‖0; s:t:; ‖Ax�y‖22rε, which is known as
the basis pursuit (BP) [11,15] algorithm. Since the L1 norm is
convex, the optimization method was fully developed. By rep-
lacing the constraint ‖Ax�y‖22rε as ‖Ax�y‖1rε or
‖Ax�y‖1rε, the BP algorithm can be converted as a linear
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programming problem and solved by many optimization
tools. Further research shows that when the problem is sparse
enough, the unique solution of the BP algorithm is identical to
the solution of L0 problem [7].

The third strategy to find the sparsest solution is the
regularization technique that converts the optimization pro-
blem to an unconstrained optimization by treating the L1
norm as a penalty term. In this case, the sparsest solution can
be obtained by some gradient-based methods, such as the
iteratively reweighted least squares (IRLS) [7,16,17]. Besides of
the L1 norm, some other penalties (named as the thresholding
methods), including the FOCUSS method [18] using ‖x‖γ as
the penalty, the Mangasarian's penalty [19], and the MCþ
penalty [20,21], are applied to approximate the L0 normmore
accurately. Since those modified penalties are non-convex, the
iteration sequences might trap into some undesired local
minima.

In this paper, the thresholding methods based on the
generalized IRLS iteration are discussed, and a novel penalty
function, double-threshold sigmoid (DTHS) penalty, is pro-
posed and analyzed in detail. The complex-valued problem
is also considered due to that in many fields, such as radar/
sonar detection [22–24], synthetic aperture radar (SAR)
image enhancement [25–31], the signal models are always
complex-valued, and it is tedious to convert them into some
real-valued counterparts and solve them by using a real-
valued-oriented method. Since the complex-valued pro-
blem is completely compatible to the real-valued one, the
conclusions drawn in this case can also be used for the real-
valued problem.

The organization of this paper is as follows. In Section 2,
the iteratively reweighted least squares algorithm is intro-
duced briefly. In Section 3, some typical thresholding penal-
ties are reviewed, a new thresholding penalty, DTHS penalty,
is proposed, and its convergence performance is discussed in
detail. In Section 4, the performances of the DTHS penalty are
analyzed by some numerical experiments and the effects of
the regularization parameter on the different methods are
compared. In Section 5, the performances of the OMP, BP, IRLS
and DTHS-1 methods are compared in both of the i.i.d.
random matrix and under-resolution PSF matrix cases. A
summary is presented in Section 6 finally.

2. Review on L1 regularization

The L1 regularization method attempts to find the spa-
rsest solution based on the penalty strategy, whose model
can be written as

min
x

Jðx; λÞ ð1:1Þ

Jðx; λÞ ¼ 1
2
‖Ax�y‖22þλ‖x‖1 ð1:2Þ

where ‖x‖1 is treated as the penalty term, λ denotes the
regularization parameter.

As we all know, the optimal solution satisfies the first-
order optimization conditions:

∇xJðxn; λÞ ¼ 0 ð2Þ
An obstacle before deducing the gradient of Eq. (1.2) is

that the derivative of xj j is undefined at zero, which always

happens when dealing with the sparse problem. Thus, some
approximation tricks, named as the smoothing technique
[32], are adopted in practice. In the real-valued case, two
frequently-used approximations are

xj j �
ffiffiffiffiffiffiffiffiffiffiffiffi
x2þδ

p
ð3:1Þ

xj j � 1
α
lnð1þe�αxÞþ lnð1þeαxÞ� � ð3:2Þ

where δ is a small positive constant, Eq. (3.1) approaches xj j
when δ-0þ ; α is a positive constant, Eq. (3.2) approaches xj j
when α-1. The former approximation is used in this paper
and δ is fixed as 0.0001.

With Eq. (3.1), the derivative of xj j can be approximated
as

d xj j
dx

� xffiffiffiffiffiffiffiffiffiffiffiffi
x2þδ

p ð4Þ

In the complex-valued case, we need to calculate the
derivative with respect to the real part xr and the imagin-
ary part xi respectively:

∂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þx2i þδ

q
∂xr

� xrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þx2i þδ

q ð5:1Þ

∂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þx2i þδ

q
∂xi

� xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þx2i þδ

q ð5:2Þ

Obviously, ensuring the real and imaginary parts to be
equal to zero respectively is equivalent to making the foll-
owing formula equal to zero, i.e.

xrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r þx2i þδ

q þ
ffiffiffiffiffiffiffiffi
�1

p
xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2r þx2i þδ
q ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xj j2þδ
p ¼ 0 ð6Þ

where x is complex-valued. Eq. (6) indicates that Eq. (4)
still holds in the complex-valued case.

With the above preparations, the gradient of Eq. (1.2)
can be written as

∇xJðx; λÞ ¼ eH1x�AHy ð7:1Þ

eH1 ¼AHAþλΧ1 ð7:2Þ

Χ19diag 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xl
�� ��2þδ

q� �
ð7:3Þ

where Χ1 is a diagonal matrix, whose diagonal entries are

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xl
�� ��2þδ

q
.

To accelerate the iteration process, we approximate the
Hessian matrix of Eq. (1.2) as

∇2
xJðx; λÞ � eH1 ð8Þ

and obtain the quasi Newton iteration formula of the L1
regularization problem, which is written as

x½kþ1� ¼ x½k� �hx eH�1
1

eH1x½k� �AHy
� 	

¼ 1�hxð Þx½k� þhx
eH�1
1 AHy ð9:1Þ

Eq. (9.1) is known as the iteratively reweighted least
squares (IRLS) algorithm [7]. Just as it is suggested in lite-
rature [27], by fixing the step size hx as 1, the iteration
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