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a b s t r a c t

The performances of adaptive filtering algorithms are critically controlled by specific
tunable parameters. The convergence rate of the normalized least mean squares (NLMS)
algorithm may be accelerated by adjusting the step size parameter. The tracking speed of
the recursive least squares (RLS) algorithm may be improved by using the forgetting
factor, which has not yet been appropriately introduced into the NLMS algorithm. This
work aims to successfully introduce the forgetting factor into the NLMS algorithm using
an H1 theoretical framework developed to create a unified view of adaptive algorithms
for recursively identifying the finite impulse response (FIR) filter coefficients. The
performances of the forgetting factor NLMS (FFNLMS) algorithm developed here, in the
context of several adaptive filtering applications, are evaluated using computer simula-
tions.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The exponential forgetting factor is typically used to
accelerate the convergence rate and tracking speed of the
recursive least squares (RLS) algorithm in adaptive filtering
applications [1–4]. The forgetting factor exponentially decre-
ases the effects of old data on a summation of the weighted
squared output errors of an adaptive filter. The forg-
etting factor has not previously been introduced into the
theoretical framework of the normalized least mean squares
(NLMS) algorithm because the original NLMS algorithm was
heuristically derived. The NLMS algorithm is an extension
(modification) of the least mean squares (LMS) algorithm,
which approximates solutions to the mean squared output
error minimization problem by replacing the expected gra-
dient in the exact solution with the instantaneous gradient.
Consequently, it is not straightforward to introduce the forg-
etting factor into the theoretical framework of the NLMS

algorithm. A novel approach would be needed to succe-
ssfully do so.

In this work, we develop a theoretical approach to intr-
oducing the forgetting factor into the NLMS algorithm using
the H1 framework presented previously by the author for
creating a unified view of adaptive finite impulse response
(FIR) filtering algorithms [5]. Interestingly, the form of the
resultant forgetting factor NLMS (FFNLMS) algorithm is iden-
tical to that of a generalized version of the proportionate
NLMS (PNLMS) algorithm [6]; however, their meanings with
respect to optimality are quite different. The PNLMS algorithm
exploits the sparse nature of impulse responses, inwhich each
filter coefficient is updated by an independent upper-bounded
step size proportional to the estimated filter coefficient. Simil-
arly, the improved PNLMS (IPNLMS) algorithm [7,8] and the
exponentially weighted step size NLMS algorithm [9] were
not derived by solving an optimization problem, whereas the
FFNLMS algorithm is H1�optimal. The performance charac-
teristics of the FFNLMS algorithm are analyzed and verified in
comparison with other adaptive algorithms using computer
simulations.

The remainder of this paper is organized as follows:
Section 2 describes an approach to deriving the FFNLMS
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algorithm using the H1 framework. Section 3 investigates
the performance characteristics of the resulting FFNLMS
algorithm in an acoustic system application. Finally, the
conclusions are presented in Section 4.

2. A forgetting factor NLMS algorithm

2.1. A fast recursive solution to the hyper H1 filtering
problem

The hyper H1 filter requires a computational complexity
of OðN2Þ to obtain the output estimate ẑkjk ¼Hkx̂kjk for an N-
dimensional state-space model : xkþ1 ¼ xkþGkwk, yk ¼Hk

xkþvk, zk ¼Hkxk, where yk is the observed output of an
unknown system [5]. Fortunately, a fast algorithm for hyper
H1 filtering, the fast H1 filter (FHF) [10], may be applied
without the Riccati recursion of Σ̂kjk�1 if the 1� N observa-
tion matrix Hk is characterized by a shift property such that
HkðiÞ ¼Hk�1ði�1Þ and Hkð1Þ ¼ uk, where Hk(i) is the i-th
element of Hk at time index k, and uk is the input to the
unknown system. The level-γf FHF algorithm can be recur-
sively calculated at a computational complexity of OðNÞ per
time step, according to

x̂kjk ¼ x̂k�1jk�1þKs;kðyk�Hkx̂k�1jk�1Þ; ẑkjk ¼Hkx̂kjk ð1Þ

Ks;k ¼
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1þγ�2
f HkKkð: ;1Þ

; Kk ¼mk�Dkμk ð2Þ
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Sk ¼ ρSk�1þeTkW ~ek; ek ¼ ckþCk�1Ak ð5Þ

Ak ¼ Ak�1�Kk�1W ~ek; ~ek ¼ ckþCk�1Ak�1 ð6Þ
where the 2� N matrix Ck consists of Hk as Ck ¼ ½HT

k ;H
T
k �T

and ckAR2�1 is the first row of Ck ¼ ½ck;…; ck�Nþ1�, assum-
ing that ck� i ¼ 02�1 for k� io0. The forgetting factor ρ is
typically selected to be 0oρ¼ 1�χðγf Þr1 for γf 41. The
recursions are initialized using K0 ¼ 0N�2, A0 ¼ 0, S0 ¼ 1=ε0,
D0 ¼ 0, x̂0j0 ¼ 0where ε0 is set to be a relatively large positive
number, 0 denotes the zero vector, and 0n�m stands for the
n�m zero matrix.

The computational burden of the FHF algorithm is com-
parable to the burdens of the fast Kalman filter (FKF) and the
fast transversal filter (FTF) [1]. Note that for γf ¼1, the FHF
algorithm coincides with the FKF algorithm.

2.2. An alternative form of the FHF recursion

The gain matrix Kk in the FHF can be expressed in a
recursive form as

Kk ¼mk�Dkμk ¼ IN�N�Dk½ �
mk
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" #
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Consequently, the FHF algorithm may be rewritten as

x̂kjk ¼ x̂k�1jk�1þKs;k yk�Hkx̂k�1jk�1
� �

;

Ks;k ¼
Kkð: ;1Þ

1þγ�2
f HkKkð: ;1Þ

ð8Þ

Kk ¼ IN�N�Dk½ �
01�2
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" #
þ 1
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IN�N�Dk½ �
1
Ak

" #
eTk ð9Þ

where the recursive variables Ak, Sk, and Dk are updated as
they are in the original FHF algorithm. Note that Kkð: ;1Þ
denotes the first column vector of Kk.

2.3. Algorithm derivation

As shown in Fig. 1 of [5], the recursive solution at the
point ðγf ;σ2

wÞ ¼ ð1;0Þ on the γf-σw
2

plane coincided with
the NLMS algorithm with a step size of μ¼ 1. The NLMS
algorithm, therefore, is strictly H1�optimal, that is con-
sistent with the conclusions of [11].

We next consider the solutions that satisfy σ2
w40 on the

line γf ¼ 1, where σw
2
is defined as the variance of wk in the

state error-dependent noise ðx̂kjk�xkÞwk. The state error-
dependent noise is equivalent to Gkwk whose covariance
matrix satisfies GkΣwkG

T
k ¼ σ2

wΣ̂kjk, which functions as a
forgetting factor [5]. Applying γf ¼ 1 to the FHF recursion
described in (2) to (6), after decoupling the relationship
between σw

2
and γf, we find that the recursive variables Ak

and Dk become zero, and Sk is given by

Sk ¼ ρSk�1 ¼ ρkS0; S0 ¼ ε�1
0 ; ρ¼ 1

1þσ2
w
: ð10Þ

The gain matrix recursion of (9) is then reduced to
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The nonrecursive form of (11) may be given, after certain
calculations, by

Kk ¼

cTk=Sk
cTk�1=Sk�1

⋮
cTk�Nþ1=Sk�Nþ1
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Substituting this result into (2) and setting γf ¼ 1, we obtain
an adaptive algorithm:

x̂kjk ¼ x̂k�1jk�1þ
ΛHT

k

JHT
k J

2
ΛþSk

yk�Hkx̂k�1jk�1
� � ð13Þ

where JHT
k J

2
Λ ¼HkΛHT

k is the squared norm of the vector HT
k

weightedwithΛ, andΛ is the diagonal matrix of the elements
1, ρ,…, and ρðN�1Þ. This algorithm is referred to as a forgetting
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