FISEVIER

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Fast communication

A new approach to introducing a forgetting factor into the normalized least mean squares algorithm

Kiyoshi Nishiyama*

Department of Electrical Engineering and Computer Science, Faculty of Engineering, Iwate University, 4-3-5, Ueda, Morioka, Japan

ARTICLE INFO

Article history:
Received 14 October 2014
Received in revised form
9 February 2015
Accepted 13 February 2015
Available online 20 February 2015

Keywords: Adaptive filter Forgetting factor NLMS algorithm RLS algorithm H_{∞} filter System identification

ABSTRACT

The performances of adaptive filtering algorithms are critically controlled by specific tunable parameters. The convergence rate of the normalized least mean squares (NLMS) algorithm may be accelerated by adjusting the step size parameter. The tracking speed of the recursive least squares (RLS) algorithm may be improved by using the forgetting factor, which has not yet been appropriately introduced into the NLMS algorithm. This work aims to successfully introduce the forgetting factor into the NLMS algorithm using an H_{∞} theoretical framework developed to create a unified view of adaptive algorithms for recursively identifying the finite impulse response (FIR) filter coefficients. The performances of the forgetting factor NLMS (FFNLMS) algorithm developed here, in the context of several adaptive filtering applications, are evaluated using computer simulations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The exponential forgetting factor is typically used to accelerate the convergence rate and tracking speed of the recursive least squares (RLS) algorithm in adaptive filtering applications [1-4]. The forgetting factor exponentially decreases the effects of old data on a summation of the weighted squared output errors of an adaptive filter. The forgetting factor has not previously been introduced into the theoretical framework of the normalized least mean squares (NLMS) algorithm because the original NLMS algorithm was heuristically derived. The NLMS algorithm is an extension (modification) of the least mean squares (LMS) algorithm, which approximates solutions to the mean squared output error minimization problem by replacing the expected gradient in the exact solution with the instantaneous gradient. Consequently, it is not straightforward to introduce the forgetting factor into the theoretical framework of the NLMS

algorithm. A novel approach would be needed to successfully do so.

In this work, we develop a theoretical approach to introducing the forgetting factor into the NLMS algorithm using the H_{\infty} framework presented previously by the author for creating a unified view of adaptive finite impulse response (FIR) filtering algorithms [5]. Interestingly, the form of the resultant forgetting factor NLMS (FFNLMS) algorithm is identical to that of a generalized version of the proportionate NLMS (PNLMS) algorithm [6]; however, their meanings with respect to optimality are quite different. The PNLMS algorithm exploits the sparse nature of impulse responses, in which each filter coefficient is updated by an independent upper-bounded step size proportional to the estimated filter coefficient, Similarly, the improved PNLMS (IPNLMS) algorithm [7,8] and the exponentially weighted step size NLMS algorithm [9] were not derived by solving an optimization problem, whereas the FFNLMS algorithm is H_{∞} -optimal. The performance characteristics of the FFNLMS algorithm are analyzed and verified in comparison with other adaptive algorithms using computer simulations.

The remainder of this paper is organized as follows: Section 2 describes an approach to deriving the FFNLMS

E-mail address: nisiyama@cis.iwate-u.ac.jp

^{*} Tel./fax: +81 19 621 6475.

algorithm using the H_{∞} framework. Section 3 investigates the performance characteristics of the resulting FFNLMS algorithm in an acoustic system application. Finally, the conclusions are presented in Section 4.

2. A forgetting factor NLMS algorithm

2.1. A fast recursive solution to the hyper H_{∞} filtering problem

The hyper H_{∞} filter requires a computational complexity of $\mathbf{O}(N^2)$ to obtain the output estimate $\hat{z}_{k|k} = \mathbf{H}_k \hat{\mathbf{x}}_{k|k}$ for an N-dimensional state-space model : $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{G}_k \mathbf{w}_k$, $y_k = \mathbf{H}_k \mathbf{x}_k + v_k$, $z_k = \mathbf{H}_k \mathbf{x}_k$, where y_k is the observed output of an unknown system [5]. Fortunately, a fast algorithm for hyper H_{∞} filtering, the fast H_{∞} filter (FHF) [10], may be applied without the Riccati recursion of $\hat{\mathbf{\Sigma}}_{k|k-1}$ if the $1 \times N$ observation matrix \mathbf{H}_k is characterized by a shift property such that $H_k(i) = H_{k-1}(i-1)$ and $H_k(1) = u_k$, where $H_k(i)$ is the i-th element of \mathbf{H}_k at time index k, and u_k is the input to the unknown system. The level- γ_f FHF algorithm can be recursively calculated at a computational complexity of $\mathbf{O}(N)$ per time step, according to

$$\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{K}_{s,k} (y_k - \mathbf{H}_k \hat{\mathbf{x}}_{k-1|k-1}), \quad \hat{z}_{k|k} = \mathbf{H}_k \hat{\mathbf{x}}_{k|k}$$
(1)

$$\boldsymbol{K}_{s,k} = \frac{\boldsymbol{K}_k(:,1)}{1 + \gamma_f^{-2} \boldsymbol{H}_k \boldsymbol{K}_k(:,1)}, \quad \boldsymbol{K}_k = \boldsymbol{m}_k - \boldsymbol{D}_k \boldsymbol{\mu}_k$$
 (2)

$$\mathbf{D}_{k} = \frac{\mathbf{D}_{k-1} - \mathbf{m}_{k} \mathbf{W} \mathbf{\eta}_{k}}{1 - \mathbf{\mu}_{k} \mathbf{W} \mathbf{\eta}_{k}}, \quad \mathbf{\eta}_{k} = \mathbf{c}_{k-N} + \mathbf{C}_{k} \mathbf{D}_{k-1}$$
(3)

$$\begin{bmatrix} \boldsymbol{m}_k \\ \boldsymbol{\mu}_k \end{bmatrix} = \begin{bmatrix} S_k^{-1} \boldsymbol{e}_k^T \\ \boldsymbol{K}_{k-1} + \boldsymbol{A}_k S_k^{-1} \boldsymbol{e}_k^T \end{bmatrix}, \quad \boldsymbol{W} = \begin{bmatrix} 1 & 0 \\ 0 & -\gamma_f^{-2} \end{bmatrix}$$
(4)

$$S_k = \rho S_{k-1} + \boldsymbol{e}_k^T \boldsymbol{W} \tilde{\boldsymbol{e}}_k, \quad \boldsymbol{e}_k = \boldsymbol{c}_k + \boldsymbol{C}_{k-1} \boldsymbol{A}_k$$
 (5)

$$\mathbf{A}_{k} = \mathbf{A}_{k-1} - \mathbf{K}_{k-1} \mathbf{W} \tilde{\mathbf{e}}_{k}, \quad \tilde{\mathbf{e}}_{k} = \mathbf{c}_{k} + \mathbf{C}_{k-1} \mathbf{A}_{k-1}$$
 (6)

where the $2 \times N$ matrix \mathbf{C}_k consists of \mathbf{H}_k as $\mathbf{C}_k = [\mathbf{H}_k^T, \mathbf{H}_k^T]^T$ and $\mathbf{c}_k \in \mathcal{R}^{2 \times 1}$ is the first row of $\mathbf{C}_k = [\mathbf{c}_k, ..., \mathbf{c}_{k-N+1}]$, assuming that $\mathbf{c}_{k-i} = \mathbf{0}_{2 \times 1}$ for k-i < 0. The forgetting factor ρ is typically selected to be $0 < \rho = 1 - \chi(\gamma_f) \le 1$ for $\gamma_f > 1$. The recursions are initialized using $\mathbf{K}_0 = \mathbf{0}_{N \times 2}$, $\mathbf{A}_0 = \mathbf{0}$, $S_0 = 1/\varepsilon_0$, $\mathbf{D}_0 = \mathbf{0}$, $\hat{\mathbf{x}}_{0|0} = \mathbf{0}$ where ε_0 is set to be a relatively large positive number, $\mathbf{0}$ denotes the zero vector, and $\mathbf{0}_{n \times m}$ stands for the $n \times m$ zero matrix.

The computational burden of the FHF algorithm is comparable to the burdens of the fast Kalman filter (FKF) and the fast transversal filter (FTF) [1]. Note that for $\gamma_f = \infty$, the FHF algorithm coincides with the FKF algorithm.

2.2. An alternative form of the FHF recursion

The gain matrix \mathbf{K}_k in the FHF can be expressed in a recursive form as

$$\begin{aligned} \mathbf{K}_k &= \mathbf{m}_k - \mathbf{D}_k \boldsymbol{\mu}_k = [\mathbf{I}_{N \times N} - \mathbf{D}_k] \begin{bmatrix} \mathbf{m}_k \\ \boldsymbol{\mu}_k \end{bmatrix} \\ &= [\mathbf{I}_{N \times N} - \mathbf{D}_k] \left\{ \begin{bmatrix} \mathbf{0}_{1 \times 2} \\ \mathbf{K}_{k-1} \end{bmatrix} + \frac{1}{S_k} \begin{bmatrix} 1 \\ \mathbf{A}_k \end{bmatrix} \boldsymbol{e}_k^T \right\} \end{aligned}$$

$$= [\boldsymbol{I}_{N\times N} - \boldsymbol{D}_k] \begin{bmatrix} \boldsymbol{0}_{1\times 2} \\ \boldsymbol{K}_{k-1} \end{bmatrix} + \frac{1}{S_k} [\boldsymbol{I}_{N\times N} - \boldsymbol{D}_k] \begin{bmatrix} 1 \\ \boldsymbol{A}_k \end{bmatrix} \boldsymbol{e}_k^T. \tag{7}$$

Consequently, the FHF algorithm may be rewritten as

$$\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{K}_{s,k} (y_k - \mathbf{H}_k \hat{\mathbf{x}}_{k-1|k-1}),$$

$$\mathbf{K}_{s,k} = \frac{\mathbf{K}_k(:,1)}{1 + \gamma_f^{-2} \mathbf{H}_k \mathbf{K}_k(:,1)}$$
(8)

$$\boldsymbol{K}_{k} = \left[\boldsymbol{I}_{N \times N} - \boldsymbol{D}_{k}\right] \begin{bmatrix} \boldsymbol{0}_{1 \times 2} \\ \boldsymbol{K}_{k-1} \end{bmatrix} + \frac{1}{S_{k}} \left[\boldsymbol{I}_{N \times N} - \boldsymbol{D}_{k}\right] \begin{bmatrix} 1 \\ \boldsymbol{A}_{k} \end{bmatrix} \boldsymbol{e}_{k}^{T}$$
(9)

where the recursive variables A_k , S_k , and D_k are updated as they are in the original FHF algorithm. Note that $K_k(:,1)$ denotes the first column vector of K_k .

2.3. Algorithm derivation

As shown in Fig. 1 of [5], the recursive solution at the point $(\gamma_f, \sigma_w^2) = (1,0)$ on the γ_f - σ_w plane coincided with the NLMS algorithm with a step size of $\mu = 1$. The NLMS algorithm, therefore, is strictly H_∞ -optimal, that is consistent with the conclusions of [11].

We next consider the solutions that satisfy $\sigma_w^2>0$ on the line $\gamma_f=1$, where σ_w^2 is defined as the variance of w_k in the state error-dependent noise ($\hat{\boldsymbol{x}}_{k|k}-\boldsymbol{x}_k$) w_k . The state error-dependent noise is equivalent to $\boldsymbol{G}_k\boldsymbol{w}_k$ whose covariance matrix satisfies $\boldsymbol{G}_k\boldsymbol{\Sigma}_{\boldsymbol{w}_k}\boldsymbol{G}_k^T=\sigma_w^2\hat{\boldsymbol{\Sigma}}_{k|k}$, which functions as a forgetting factor [5]. Applying $\gamma_f=1$ to the FHF recursion described in (2) to (6), after decoupling the relationship between σ_w^2 and γ_f , we find that the recursive variables \boldsymbol{A}_k and \boldsymbol{D}_k become zero, and S_k is given by

$$S_k = \rho S_{k-1} = \rho^k S_0, \quad S_0 = \varepsilon_0^{-1}, \quad \rho = \frac{1}{1 + \sigma_0^2}.$$
 (10)

The gain matrix recursion of (9) is then reduced to

$$\boldsymbol{K}_{k} = [\boldsymbol{I}_{N \times N} \ \boldsymbol{0}] \begin{bmatrix} \boldsymbol{0}_{1 \times 2} \\ \boldsymbol{K}_{k-1} \end{bmatrix} + \frac{1}{S_{k}} [\boldsymbol{I}_{N \times N} \ \boldsymbol{0}] \begin{bmatrix} 1 \\ \boldsymbol{0} \end{bmatrix} \boldsymbol{c}_{k}^{T} \\
= \begin{bmatrix} 0 & \cdots & \cdots & 0 & 0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{bmatrix} \boldsymbol{K}_{k-1} + \frac{1}{S_{k}} \begin{bmatrix} \boldsymbol{c}_{k}^{T} \\ 0 \\ \vdots \\ \vdots \\ 0 \end{bmatrix}.$$
(11)

The nonrecursive form of (11) may be given, after certain calculations, by

$$\boldsymbol{K}_{k} = \begin{bmatrix} \boldsymbol{c}_{k}^{T} / S_{k} \\ \boldsymbol{c}_{k-1}^{T} / S_{k-1} \\ \vdots \\ \boldsymbol{c}_{k-N+1}^{T} / S_{k-N+1} \end{bmatrix} = \frac{1}{S_{k}} \begin{bmatrix} \boldsymbol{c}_{k}^{T} \\ \rho \boldsymbol{c}_{k-1}^{T} \\ \vdots \\ \rho^{N-1} \boldsymbol{c}_{k-N+1}^{T} \end{bmatrix}.$$
(12)

Substituting this result into (2) and setting $\gamma_f=1$, we obtain an adaptive algorithm:

$$\hat{\boldsymbol{x}}_{k|k} = \hat{\boldsymbol{x}}_{k-1|k-1} + \frac{\boldsymbol{\Lambda} \boldsymbol{H}_k^T}{\|\boldsymbol{H}_k^T\|_{\boldsymbol{\Lambda}}^2 + S_k} (y_k - \boldsymbol{H}_k \hat{\boldsymbol{x}}_{k-1|k-1})$$
 (13)

where $\|\boldsymbol{H}_k^T\|_{\Lambda}^2 = \boldsymbol{H}_k \Lambda \boldsymbol{H}_k^T$ is the squared norm of the vector \boldsymbol{H}_k^T weighted with Λ , and Λ is the diagonal matrix of the elements 1, ρ , ..., and $\rho^{(N-1)}$. This algorithm is referred to as a forgetting

Download English Version:

https://daneshyari.com/en/article/562455

Download Persian Version:

https://daneshyari.com/article/562455

<u>Daneshyari.com</u>