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a b s t r a c t

In this paper we propose an accelerated reweighted nuclear norm minimization algorithm
to recover a low rank matrix. Our approach differs from other iterative reweighted
algorithms, as we design an accelerated procedure which makes the objective function
descend further at every iteration. The proposed algorithm is the accelerated version of a
state-of-the-art algorithm. We provide a new analysis of the original algorithm to derive
our own accelerated version, and prove that our algorithm is guaranteed to converge to a
stationary point of the reweighted nuclear norm minimization problem. Numerical results
show that our algorithm requires distinctly fewer iterations and less computational time
than the original one to achieve the same (or very close) accuracy, in some problem
instances even require only about 50% computational time of the original one, and is also
notably faster than several other state-of-the-art algorithms.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

There is a rapidly growing interest in the low rank matrix
recovery problem or the rank minimization problem, which
recovers an unknown low rank matrix form very limited
information [1–5]. This paper deals with the following affine
rank minimization problem:

min
X

rankðXÞ s:t: AðXÞ ¼ b; ð1Þ

where the linear map A:Rm�n-Rs and the vector bARs

are known.
The above problem aims to find a matrix of minimum

rank that satisfies a given system of linear equality constraints,
which is a useful idea that can be applied to various applica-
tions such as signal or image processing [6,7], subspace
segmentation [8], collaborative filtering [9] and system

identification [10]. Although (1) is simple in form, it is a
challenging optimization problem due to the discrete nat-
ure of the rank function.

A commonly used heuristic introduced in [11] is repla-
cing the rank function with the nuclear norm, which is the
sum of the singular values of the matrix. This technique is
based on the fact that the nuclear norm minimization is
the tightest convex relaxation of the rank minimization
problem. The new formula can be given by

min
X

jjXjjn s:t: AðXÞ ¼ b; ð2Þ

which can be rewritten as follows under some conditions
(recall the Lagrangian relaxation):

min
X

λ X jnþ1
2 ‖AðXÞ�b‖22;

������ ð3Þ

where jjXjjn≔
Pr

i ¼ 1 σiðXÞ denotes the nuclear norm.
However, the nuclear norm minimization requires

more measurements for exact recovery of the low rank
solution. Recently, a tighter relaxation, called the Schatten
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p-norm1 minimization [12–14], was introduced instead of
the previous nuclear norm minimization in order to give a
better approximation to the original problem. The Schat-
ten p-norm with 0opr1 is defined as

jjXjjp≔
Xr
i ¼ 1

σiðXÞp
 !1=p

: ð4Þ

It is easy to see that when p¼1, the Schatten p-norm is exa-
ctly the nuclear norm, and when p tends towards 0, the Sch-
atten p-norm becomes closer to the rank function. Thus,
Schatten p-norm is more general than the nuclear norm. Th-
eoretical analysis in [12,13,15] shows that the Schatten p-norm
needs fewer measurements with small p for exact recovery.

With the above definition, the Schatten p-norm mini-
mization can be formulated as follows:

min
X

P0 Xð Þ≔λp‖X‖ppþ1
2 ‖AðXÞ�b‖22; ð5Þ

When 0opo1, the above problem is nonconvex. To
solve this nonconvex problem efficiently, some iterative
reweighted algorithms have been proposed and analyzed
in recent published literature [2,3,14]. The key idea of
iterative reweighted technique is to solve a convex pro-
blem with a given weight at each iteration, and update the
weight at every turn. This idea is commonly used to solve
Schatten p-norm or Lp norm minimization.

In this paper we propose a novel iterative reweighted
algorithm that solves the Schatten p-norm minimization
problem (i.e., (5)) very efficiently. Different from other
iterative reweighted algorithms, we add an accelerated
procedure which makes the objective function descend
further at every iteration. The proposed algorithm is the
accelerated version of a state-of-the-art algorithm, called
the reweighted nuclear norm minimization (RNNM) algo-
rithm [16]. However, our accelerated version is notably
faster than the original one, and achieves the same (or
very close) accuracy.

The rest of this paper is organized as follows. In Section 2,
we give some preliminary results that are used in our analysis.
In Section 3, we give our own analysis of the original RNNM
algorithm, and Section 4 uses this analysis to derive a sketch
of the accelerated version. Some algorithm details are dis-
cussed in Sections 5 and 6. The convergence analysis, which
proves that our algorithm is guaranteed to converge to a
stationary point of P0ðXÞ (see (5)), is given in Section 7.
Numerical results are reported in Section 8. In Section 9, we
give some conclusions.

2. Preliminaries

We first introduce the following unconstrained smooth
nonconvex problem to approximate (5):

min
X

P X; εð Þ≔λp‖X‖pp;εþ1
2 ‖AðXÞ�b‖22; ð6Þ

where XARm�n and

jjXjjp;ε≔
Xm
i ¼ 1

ðσiðXÞþεÞp
 !1=p

:2 ð7Þ

with ε40. Here we assume mrn without loss of gen-
erality. Compare (7) with (4), one can see that with ε tends
to 0, (7) will get closer to (4).

The following definition will be used frequently in this
paper.

Definition 1. Let X ¼UΣVT be the reduced singular value
decomposition (SVD) of X with rank r. For each vZ0, the
weighted singular value shrinkage operator Dvð�;wÞ is
defined by

DvðX;wÞ ¼U DiagfðσiðXÞ�vwiÞþ ; i¼ 1;2;…; rgVT ;

where ð�Þþ≔maxfa;0g for any aAR; wi, i¼ 1;2;…; r are
elements of vector w; σiðXÞ, i¼ 1;2;…; r, are singular
values of X.

With Definition 1, we give the following lemma, which
has been proved in [16].

Lemma 1. For each vZ0 and a constant matrix YARm�n,
the weighted singular value shrinkage operator DvðY ;wÞ is
the optimal solution of the following problem:

min
X

v
Xm
i ¼ 1

wiσi Xð Þþ1
2
‖X�Y‖2F :

For convenience, the abbreviation ORNNM refers to the
original RNNM algorithm that we aim to accelerate in the
sequel.

3. A new analysis for original RNNM algorithm

In this paper, we propose an accelerated procedure to
improve the performance of ORNNM. This algorithm has
been analyzed in [16]. However, to derive our accelerated
version, here we give our own analysis.

Inspired by [17,4], where auxiliary functions for analyzing
the L1 norm/Schatten p-norm minimization were con-
structed, we define a different auxiliary function as follows:

Q ðX;Y ;w; εÞ ¼ FðX;w; εÞþGðX;YÞ ð8Þ
where

F X;w; εð Þ≔λ
Xm
i ¼ 1

pwiðσiðXÞþεÞþð1�pÞwp=ðp�1Þ
i

� �

þ1
2
‖AðXÞ�b‖22 ð9Þ

and

G X;Yð Þ≔�1
2
‖AðX�YÞ‖22þ

1
2
‖X�Y‖2F : ð10Þ

In the following, we illustrate that minimizing QðX;Y ;
w; εÞ will lead to minimizing P0ðXÞ (see (5) for definition).

First, it can be verified that wn, whose entries
wn

i ¼ ðσiðXÞþεÞp�1, i¼ 1;2;…;m, minimizes FðX;w; εÞ over

1 Strictly speaking, the Schatten p-norm is not a norm when 0opo1
since it is nonconvex. However it is called a norm customarily.

2 Strictly speaking, this is not a norm. However we preserve the norm
notation for conventional reason, since the Schatten p-norm is neither a
norm but it is still common to use a norm notation for it in the literature.
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