
Fast communication

Integer/fractional decomposition of the impulse response
of fractional linear systems

Manuel D. Ortigueira a,1, J. Tenreiro Machado b,n, Margarita Rivero c,
Juan J. Trujillo d

a UNINOVA and DEE of Faculdade de Ciências e Tecnologia da UNL Campus da FCT da UNL, Quinta da Torre, 2829 – 516 Caparica, Portugal
b Institute of Engineering, Polytechnic of Porto, Department of Electrical Engineering, R. Dr. António Bernardino de Almeida,
431 4200-072 Porto, Portugal
c Departamento de Matemáticas, Estadística e I.O., Universidad de La Laguna, 38271 La Laguna, Tenerife, Spain
d Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, Tenerife, Spain

a r t i c l e i n f o

Article history:
Received 16 December 2014
Received in revised form
17 January 2015
Accepted 16 February 2015
Available online 24 February 2015

Keywords:
Fractional linear systems
Impulse response
Mittag-Leffler function
Discrete differential system

a b s t r a c t

The decomposition of a fractional linear system is discussed in this paper. It is shown that
it can be decomposed into an integer order part, corresponding to possible existing poles,
and a fractional part. The first and second parts are responsible for the short and long
memory behaviors of the system, respectively, known as characteristic of fractional
systems.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fractional linear systems are usually expressed by a
fractional order constant coefficient linear differential
equation with the general format [1,2]:

XN
k ¼ 0

akD
αk yðtÞ ¼

XM
k ¼ 0

bkD
βk xðtÞ ð1Þ

where the symbol D represents the derivative operator,
tAR, or tAN, if the system is continuous-time, or discrete-
time differential. The parameters αk and βk denote the
derivative orders that we assume to form strictly increasing

sequences of positive numbers, and ak;bkAR. In the so-
called commensurate case we write αk ¼ βk ¼ kα, kAN,
with 0oαr1. In current applications we assume that
βMrαN for stability reasons.

There are several definitions of derivative [3,4]. Here
we will assume that we are dealing with causal derivatives
such that

Dα
f e

st ¼ sαest if ReðsÞ40 ð2Þ

In which concerns causal derivative definitions the
most suitable is the forward Grünwald–Letnikov deriva-
tive:

Dα
f f tð Þ ¼ lim

h-0þ

1
hα

X1
k ¼ 0

ð�1Þk α
k

� �
f t�khð Þ: ð3Þ

Relations (2) and (3) are valid for any order, but we will
assume that α is positive, if the limit in (3) exists for the
considered function. According to (2) the exponential
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is the eigenfunction of the system defined by (1). The
corresponding eigenvalue, H(s), is the transfer function
(TF) of [2]

H sð Þ ¼ BðsÞ
AðsÞ ¼

PM
k ¼ 0 bks

βkPN
k ¼ 0 aksαk

ð4Þ

As in the classical case we will name by “poles” the roots of
the characteristic pseudo-polynomial, A(s), in the denomi-
nator of the TF [1].

The main objective of this paper is the inversion of (4),
in order to get the impulse response. The inversion of each
partial fraction is currently done by means of the Mittag-
Leffler function [3,1]. We proposed an alternative method,
by decomposing the impulse response into two terms that
are obtained using the Hankel integration path [5,1] to
compute the Bromwich integral. One term corresponds to
the integer order part and results from the residue
theorem. The other term is the purely fractional part that
assumes an integral form. This is a generalization of a
more restrict result obtained by Gorenflo and Mainardi
[6,7]. With this result we can show that the impulse
response, corresponding to (10), has two contributions.

The general formulation (10) is not easy to tackle. With
the help of the Laplace transform (LT) it is possible to
obtain the impulse response using a rather involved
expression [3]. Nevertheless, these approaches have an
important drawback: the solutions rely on one, or several,
Taylor or Mittag-Leffler series, that create several compu-
tational problems. Furthermore, these approaches mask
the underlying structure of the system, in the sense that
they do not highlight the presence of two different terms:

� One component of integer order that inherits the classical
behavior, mainly oscillations and (un)stability.

� One component of fractional order responsible for the
long range behavior of the fractional linear systems,
that is intrinsically stable as we will demonstrate in the
sequel.

Having these ideas in mind, the paper is organized as
follows. In Section 2 we describe the referred decomposi-
tion and we show how to compute each part. In Section 3
we illustrate the decomposition procedure. Finally, in
Section 4 we outline the main conclusions.

2. The inversion of the transfer function

The solution supplied by Taylor, Mittag-Leffler, or some
series of the same type masks the underlying structure of
the TF. This limitation is revealed when we try to compute
its inversion by using the Bromwich integral, or the
Mellin's inverse formula. In fact, to obtain it we must fix
a branch cut line. As the transform must be analytic on the
right half complex plane we choose the left half real axis.
On the other hand, function (4) is continuous from above
on the branch cut line and verifies lims-1HðsÞ ¼ 0,
jargðsÞjoπ. We will assume that lims-0sHðsÞ ¼ 0. Let
γk; pk
� �

, k¼ 1;2;…;K , be the pairs (order, root) such that
AðsÞ ¼∏K

1 ðsγk �pkÞ. Let K0rK be the number of poles. We
remember that a given root p, corresponding to a given

order γ, is a pole, if when s¼ jsjeiθ and p¼ jpjeiϕ, we have
jsj ¼ jpj1=γ and θ¼ϕ=γ. However, we have jϕjrπ and,
therefore, we only obtain a pole if jϕjrπ=γ.

In these conditions we can use the Hankel integration
path [5,1] and we apply the residue theorem. Let uARþ

and consider HðeiπuÞ and Hðe� iπuÞ, the values of H(s)
immediately above and below the branch cut line.
Proceeding as in [5] we obtain

h tð Þ ¼
XK0

k ¼ 1

Ake
p
1=γk
k

tε tð Þþ 1
2πi

Z 1

0
Hðe� iπuÞ
h

�HðeiπuÞ
i
e�σt du � ε tð Þ ð5Þ

where εðtÞ is the unit step function and the constants Ak,
k¼ 1;2;…;K0, are the residues of (4) at p1=γkk .

This expression generalizes a more restrict result
obtained by Gorenflo and Mainardi, [6–8], in deducing
the properties of Mittag-Leffler function.

Computing the LT of both sides in (5) we obtain

HðsÞ ¼HiðsÞþHf ðsÞ ð6Þ
where the integer order part is

Hi sð Þ ¼
XK0

k ¼ 1

Ak

s�p1=γkk

; Re sð Þ4max Re p1=γkk

� �� �
ð7Þ

and the fractional part is

Hf sð Þ ¼
1
2πi

Z 1

0
Hðe� iπuÞ�HðeiπuÞ
h i 1

sþu
du ð8Þ

valid for ReðsÞ40.
Fig. 1 shows the amplitude (in logarithmic scale) and

phase (in linear scale) spectra for 0rαr1 and p¼ �1.
The above steps led us to realize that

� For γk ¼ 1, k¼ 1;2;…;K , we have no fractional compo-
nent. The TF is a sum of partial fractions and each one
has an exponential for solution.

� For γko1, k¼ 1;2;…;K , we may have two components
depending on the location of pk in the complex plane
– If jargðpkÞj4π=γk, k¼ 1;2;…;K , then we do not have

the integer order component; it is a purely fractional
system.

– If jargðpkÞjrπ=γk, k¼ 1;2;…;K , for some k, then it is
mixed character system in the sense that we have
both components.

– When jargðpkÞj ¼ π=ð2γkÞ, for some k, the integer
order component is sinusoidal; however, the frac-
tional component decreases to zero.

� The stability condition comes only from the integer
order component. In fact, and as it is straightforward to
verify, the integer order component is stable if π=ð2γkÞ
o jargðpkÞjoπ=γk, k¼ 1;2;…;K0, and unstable if
jargðpkÞjoπ=ð2γkÞ, k¼ 1;2;…;K0. The case jargðpkÞj ¼
π=ð2γkÞ corresponds to a critically stable system.

Concerning to the fractional part we can verify that
Hðe� iπσÞ�HðeiπσÞ is a bounded function. Therefore, the
integral in (5) is also bounded and decreases to zero as t
goes to infinite.

In the sequel we will assume that we are dealing with
stable systems. The above considerations allow us to
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