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a b s t r a c t

An efficient and low complexity frequency estimation method based on the discrete
Fourier transform (DFT) samples is described. The suggested method can operate with an
arbitrary window function in the absence or presence of zero-padding. The frequency
estimation performance of the suggested method is shown to follow the Cramer–Rao
bound closely without any error floor due to estimator bias, even at exceptionally high
signal-to-noise-ratio (SNR) values.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Frequency estimation of complex exponential signals is
a fundamentally important non-linear parameter estima-
tion problem arising in several applications. Recently, an
efficient frequency estimation technique based on the
samples of Discrete Fourier Transform (DFT) has been
proposed in [1,2]. An important restriction of this techni-
que and several others such as [3–7] is the requirement of
DFT calculation with the rectangular window without any
zero-padding. The present work aims to remove both of
these restrictions by adapting the bias correction factor in
[2] to the window of interest.

The frequency estimation method given in [1,2] con-
sists of two stages. In the first stage (coarse frequency
estimation), N-point Discrete Fourier Transform (DFT) of
the N-point input is calculated. In the second stage (fine
frequency estimation), the DFT bin with the maximum
magnitude (kp) and its immediate left (kp�1) and right
neighbors (kpþ1) are used to estimate the fine part of the

frequency:

bδ ¼ cN Real
R½kp�1��R½kpþ1�

2R½kp��R½kp�1��R½kpþ1�

� �
: ð1Þ

Here cN is tan ðπ=NÞ
π=N for the rectangular window. The final

frequency estimate is formed by combining the results of
both stages, bω ¼ 2πðkpþbδÞ=N radians/sample. The first stage
of this estimator works with the rectangular window in the
absence of zero-padding. Further details on this method can
be found in [1,2].

In many applications, the DFT calculation is implemented
with a properly selected window to suppress the interfer-
ence caused by undesired spectrum components [8–10]. For
example, in pulse Doppler radars, the desired signal (target
echo at a specific Doppler frequency) coexists with other
echos such as clutter signal, undesired target echos and
jamming signal. With the application of windowing, the
impact of interfering components on the desired signal is
reduced. Due to emergence of the same problem in many
applications, a number of frequency estimation methods
with windowed data are given in the instrumentation and
measurement literature [11–14]. A particularly well known
estimator is the one utilizing Rife–Vincent class-I windows
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is [12,13]

bδ ¼ Mþ1ð Þ jRw½kpþ1�j�jRw½kp�1j�
2jRw½kp�jþjRw½kp�1�jþjRw½kpþ1�j: ð2Þ

Here jRw½kp�j is the peak value of the windowed DFT output
where the applied window is the Rife–Vincent class-I win-
dow having the parameter M¼ f0;1;2;…g. Rife–Vincent
class-I windows are equivalent to the rectangular and Hann
windows for M¼0 and M¼1, respectively. Due to the wide-
spread usage of Hann window M¼1 case of this estimator is
important for many applications.

In an analogy with (1), the window specific correction
factor for the estimator in (2) is ðMþ1Þ. It should be clear that
the estimator (2) and its correction factor are specific to a
particular window. To the best of our knowledge, apart from
Duda's work [14], all other estimators in the literature are also
derived for specific windows [9–11]. In [14], Duda presents a
novel approach based on compensating the window specific
estimator bias through a high order polynomial interpolation.
The approach presented in this paper is very similar, in
principle, to the one of Duda's. Here, we only adapt the bias
compensation factor cN in (1) to the window. The main
advantage of the proposed method is its improved perfor-
mance in spite of its low computational complexity.

2. Preliminaries

A complex exponential signal with the normalized fre-
quency f in ½0;1Þ and with the complex amplitude A is
observed under additive white Gaussian noise:

r½n� ¼ Aejð2πfnþϕÞ þv½n�; n¼ f0;…;N�1g: ð3Þ

The frequency f can also be denoted in terms of the DFT bins,
f ¼ ðkpþδÞ=N where kp is an integer in ½0;N�1� and δ is a
real number in �1=2oδo1=2 [2]. The noise v½n� is circu-
larly symmetric complex valued Gaussian noise with zero
mean and σv

2
variance, v½n� � CN ð0;σ2

v Þ. The signal-to-noise
ratio is defined as SNR¼ A2=σ2

v .
In many applications, the complex exponential signal is

observed in the presence of interfering signals. For such
applications, the DFT is calculated with a proper a window
function to reduce the interference on the frequency esti-
mate. Fig. 1 shows the spectrumwith the Hamming window.
The Hamming window with its low side-lobes reduces
the interference leakage at the cost main-lobe widening
[8, Chapter 6]. It can be also seen that the curvature around
the peak changes significantly with the applied window. This
is the main reason that an interpolation based frequency
estimation method for a specific window does not work for
any other window.

As noted in the introduction section, the first stage of the
method described in [1] calculates the N-point DFT of r½n� and
then a peak search in the magnitude spectrum is conducted.
This stage aims to estimate the coarse part of the frequency
(kp) as shown in Fig. 1. In the second stage, the fractional part
of the frequency (δ) is estimated. For the rectangular wind-
owed signal, δ is estimated through the relation (1) with
cN ¼ tan ðπ=NÞ

π=N . Our goal is to use the same relation for δ
estimation, but select the bias-correction coefficient cN accord-
ing to the window function.

3. Main results

In the first stage of the proposed method, the input signal
is transformed to the DFT domain after the application of the
real valued window w½n�,

R½k� ¼
XN�1

n ¼ 0

w½n�r½n�e� jð2π=N2Þkn; k¼ f0;1;2;…;N2�1g ð4Þ

where N2 is the number of DFT points, which is possibly larger
than N with the application of zero-padding. In the absence of
noise, we may take, without any loss generality, A¼1 in (3)
and write r½n� as r½n� ¼ ej2πðkp þδÞ=N2 . Then, the spectrum
samples R½kpþ l� (l: integer) can be written as follows:

R½kpþ l� ¼
XN�1

n ¼ 0

w½n�ejð2πn=N2Þðδþ lÞ ¼ f wðδþ lÞ: ð5Þ

The window dependent f wðαÞ function appearing on the right
hand side of (5) is explicitly defined as

f wðαÞ ¼
XN�1

n ¼ 0

w½n�ejð2πnN2Þα: ð6Þ

For the case of zero-padding (N24N), the window function
w½n� in (6) can be considered as the zero-padded version of
N-point window and f wðαÞ for integer valued α values is its
N2-point inverse DFT.

3.1. Bias correction factor

An estimate for δ can be produced through the proces-
sing of the samples R½kp�1� ¼ f wðδþ1Þ;R½kp� ¼ f wðδÞ and
R½kpþ1� ¼ f wðδ�1Þ via the relation (1), provided that cN is
made available. Our goal is to set the bias correction factor
cN according the windowing function.

To facilitate the calculation of cN, we expand the function
f wðδþ lÞ into the Taylor series around α¼ l:

f wðδþ lÞ ¼ f wðlÞþ f 0wðlÞδþOðδ2Þ ð7Þ
Here f 0w αð Þ ¼ j2π

N2

PN�1
n ¼ 0 nw n½ �ejð2πn=N2Þα is the first deriva-

tive of the function given in (6). Upon the substitution of

0
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Fig. 1. DTFT and DFT spectrum of the complex exponential waveform
with the frequency kpþδ bins using rectangle and Hamming windows.
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