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a b s t r a c t

In estimating the head pose angles in 3D space by manifold learning, the results currently
are not very satisfactory. We need to preserve the local geometry structure effectively and
need a learned projective function that can reveal the dominant features better. To
address these problems, we propose a Supervised Sparse Manifold Regression (SSMR)
method that incorporates both the supervised graph Laplacian regularization and the
sparse regression into manifold learning. In SSMR, on the one hand, a low-dimensional
projection is embedded to represent intrinsic features by using supervised information
while the local structure can be preserved more effectively by using the Laplacian
regularization term in the objective function. On the other hand, by casting the problem
of learning projective function into a regression with L1 norm regularizer, a projection is
mapped to carry out the sparse representation of high dimension features, rather than a
compact linear combination, so as to describe the dominant features better. Experiments
show that our proposed method SSMR is beneficial for head pose angle estimation in
3D space.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Head pose estimation is an important preprocess
necessary for face recognition, human object tracking,
and human–machine interface [1]. In the past few years,
although the face tracking or face recognition related
researches have achieved great progresses, works on
robust algorithms for changing head pose are demanded
and there still remain difficulties to be overcome. Since its
accuracy is prerequisite and crucial to improve the perfor-
mance of the face related problems, head pose estimation
has been paid more and more attentions [2,3]. Specifically,
the task of head pose estimation is to determine the head
pose angles in 3D space from the input 2D face images.

The rotation of the head has three types: yaw, pitch and roll.
The rotation angles are between [�901, 901] of each type,
and the result of head pose estimation is always repre-
sented as a vector. Commonly, the yaw angle estimation
should be fulfilled first [4,5], and the angle estimation for
other two types could use the same method to deal with.

Besides using 2D images, using of range data is an
another way to estimate the 3D pose [6], yet it needs an
expensive equipment to get the 3D data and it involves
much more computation. The pose estimation is also one
of the key tasks for 3D object retrieval and recognition. An
interactive and computationally efficient 3D object retrie-
val scheme with query view selection approach is given by
Gao et al. [7]. In [8], an approach of hypergraph analysis is
proposed for 3D object retrieval and recognition, where
the multiple hypergraphs are constructed for 3D objects
from their 2D views. A Hausdorff distance learning scheme
for interactive 3D object retrieval is provided in [9].
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In recent years, manifold learning has been widely
exploited in various machine learning areas such as
pattern recognition, image analysis and data mining. There
already exist several different manifold learning methods,
for example, Locally Linear Embedding (LLE) [10], ISOMAP
[11] and Laplacian Eigenmap (LE) [12], etc. As a special
class of dimension reduction techniques which are impor-
tant to machine learning, the manifold learning attempts
to learn a low-dimensional manifold structure from the
observation of high dimension space. Surely, the technique
is applicable in head pose estimation. A fundamental
assumption of using this technique is that the face images
with changing head pose are often highly nonlinear to the
pose information, then they can be naturally considered as
a kind of low-dimensional manifold structure. Thus, using
manifold learning to compute the head pose angle in 3D
space from single 2D face image should be beneficial. The
manifold models the nonlinear and continuous variations
of face appearance, and if learn properly, new face images
can then be embedded in a low-dimensional space to
estimate the head pose angle. In [13], Raytchev et al. have
proposed a kind of nonlinear pose image expression
technique based on ISOMAP. Fu & Huang use Graph
Embedding (GE) technique for head pose estimation [14].
In [14], they first construct neighborhood weight graph
under LLE through graph embedded linearization, then the
projection direction from a high-dimensional space to a
low-dimensional embedding is found. Finally, the head
pose category of test sample is obtained by using nearest
neighbor classifier.

In [15,16], Balasubramanian et al. propose a framework
of Biased Manifold Embedding (BME), where they use the
head pose label information before obtaining low-
dimensional embedding, then they use a Generalized
Regression Neural Network (GRNN) to learn the nonlinear
mapping to deal with the out-of-sample data points. Yan
et al. in [17], by considering several kinds of manifold
learning methods, propose an unified graph embedding
and extensions framework of dimensionality reduction
algorithm based on the spectral graph theory. In [18], by
incorporating head pose angle information as the super-
vision into the objective function, BenAbdelkader et al.
propose a framework of supervised manifold learning for
head pose estimation, where the cubic splines smoothing
and support vector regression are used to get nonlinear
mapping to estimate the head pose angles in the low-
dimensional embedded space. Some linearized version of
Locally Linear Embedding (LLE) and Laplacian Eigenmap
(LE), Neighborhood Preserving Embedding (NPE) [19] and
Locality Preserving Projections (LPP) [20] are proposed by
He et al. These methods are efficient, can directly handle
the out-of-sample extension and can fully show the
characteristics and advantages of linear manifold learning.

However, these current methods may have a drawback
that the linear projection is just a compact linear combi-
nation of all the high-dimensional original features. There
is an important problem that cannot be neglected, that is,
from the viewpoint of feature selection and extraction, the
dominant features should be maintained while others
should be depressed. To handle this problem, in this paper
we add a local graph Laplacian term with L1 norm in the

optimization objective of the manifold learning to get the
low-dimensional embedding. Through this sparse regres-
sion minimization we can obtain the projection mapping
matrix, then the sparse representation of high-dimensional
features can be conducted. The supervised Laplacian reg-
ularization into objective function helps us to achieve the
preservation of both the local geometry and the dominant
features.

In the following sections, this paper is organized as the
following: Section 2 presents the supervised manifold
learning method based on the sparse regression. Section 3
provides experimental results of head pose estimation on
the FacePix dataset. Section 4 is the conclusion, and some
future works are also suggested.

2. Supervised manifold learning and sparse regression

2.1. Graph construction

The manifold learning can be regarded as a procedure
of two stages of graph construction and graph embedding
[17,21]. The graph construction should be conducted first.
Specifically, for a given sample set X¼ ½x1; x2;…xN�, where
xiARD, i¼ 1;…N, the corresponding low-dimensional
embedding of each sample is Y¼ ½y1; y2;…;yn�, where
yiARd, i¼ 1;…N, d5D. Their corresponding patterns,
the head pose angles in this paper, are denoted as βi,
i¼ 1;…N. Quite often, the k nearest neighbor criterion is
used to construct weight graph. But if just simply use
Euclidean distance of the sample xi and xj to determine
whether they are k nearest neighbors, many information
may be lost. This is because in original high-dimensional
feature space, the sample similarity is much more affected
by image details, such as expressions and illuminations,
while less by head pose information. BME [15,16] frame-
work introduces biased distance into neighbor closure
measurement to reduce deviation brought from image's
L2 norm. The biased distance is described in the form of

~D i; jð Þ ¼D i; jð Þ distði; jÞþε
MaxDist�distði; jÞþε

; i; j¼ 1;…N: ð1Þ

where Dði; jÞ ¼ Jxi�xj J2 stands for the Euclidean distance
in the original feature space, and ε is a label adjusting
factor; distði; jÞ ¼ γ � jβi�βjj, where γ is a control parameter,
βi, βj are the head pose angles of sample xi, xj, respectively.
Meanwhile,MaxDist ¼maxfdistði; jÞji; j¼ 1;…;Ng, it denotes
the maximum distance of distði; jÞ between all pairs. By
Eq. (1), ~Dði; jÞ becomes smaller when the head poses of
sample xi and xj are more similar and closer, and becomes
bigger when the poses are more separated. Through such
biased distance measure ~Dði; jÞ, the supervised k nearest
neighbor set NkðxiÞ of each sample xi could be obtained,
which can represent better the head pose distance.

Now a Gaussian kernel weight matrix S that is related
with ~Dði; jÞ is necessary in our manifold learning.

(a) The Gaussian kernel [12,20]:

Wi;j ¼
exp � Jxi�xj J2

2σ2

 !
; xiANkðxjÞ3xjANkðxiÞ

0 otherwise
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