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a b s t r a c t

This paper investigates fractional order differentiation and its applications in digital image
processing. We propose an improved model based on the Grünwald-Letnikov (G–L)
fractional differential operator. Our improved denoising operator mask is based on G–L
fractional order differentiation. The total coefficient of this mask is not equal to zero,
which means that its response value is not zero in flat areas of the image. This nonlinear
filter mask enhances and preserves detailed features while effectively denoising the
image. Our experiments on texture-rich digital images demonstrated the capabilities of
the filter. We used the information entropy and average gradient to quantitatively
compare our method to existing techniques. Additionally, we have successfully used it
to denoise three-dimensional magnetic resonance images.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Images are often corrupted by additive noise when they
are being captured and transmitted. The main aim of an
image denoising algorithm is to reduce the noise level
while preserving the image features. In recent years, frac-
tional calculus has become increasingly important to foun-
dational research and engineering applications. Fractional
calculus provides methods to differentiate and integrate
functions to non-integer orders. The concept of fractional
calculus came into existence in 1695 during discussions
between Leibniz and L'Hospital. Three popular definitions
for fractional calculus were given by Grunwald–Letnikov
(G–L), Riemann–Liouville (R–L), and Caputo [1–3]. Of these,
G–L and R–L are the most popular definitions used in digital

image processing. The G–L-based differential operator is
used by many researchers and scholars [4–6]. Fractional
differential is an effective mathematical method for dealing
with fractal problems [7–9]. Fractional differentiation for
image processing is a burgeoning subject [10–12]. Pu et al.
proved that fractional differential-based methods can pre-
serve low-frequency contour features in smooth areas.
They also proved that they retain high-frequency marginal
features in areas that have large gray-level variabilities, and
can enhance texture details in areas that do not have
significant gray-level variabilities [13–16].

Three-dimensional (3-D) images are becoming increas-
ingly common in image processing applications [17–21].
For instance, magnetic resonance images (MRIs) and
functional MRIs (fMRIs) are used to study the biological
mechanism of a 3-D object (e.g., a patient's ankle). They
acquire a set of two-dimensional (2-D) images that corre-
spond to slices of the 3-D object. Then, the 3-D object is
reconstructed from the 2-D images. This is called 3-D
image reconstruction. However, 3-D images often contain
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noise because of hardware imperfections and other rea-
sons. 3-D image denoising based on minimizing the total
variation (TV) [22] is popular in image processing. Cham-
bolle's algorithm has recently been developed to denoise
3-D images [23]. Other 3-D image denoising methods are
based on 3-D sparse representations [24,25], non-local
means [26], and other techniques.

In this paper, we propose a fractional order image
denoising method that can preserve edges and major edge
features. Our method consists of three major steps. First, it
uses the G–L definition as the basis of our fractional order
differential equation-based denoising method. Second, we
derive an improved G–L image denoising mask and numer-
ical method. Finally, we demonstrate the denoising capability
of the proposed method. Our experimental results prove that
the algorithm can preserve low-frequency contour features
in a smooth area. Additionally, it is a nonlinear method that
maintains high-frequency edge and texture details in areas
where the gray level does not significantly vary.

The outline of this paper is as follows. In Section 2, we
introduce work related to the G–L fractional order deriva-
tive definition and properties. In Section 3, we develop
an improved G–L method to solve the image denoising
problem. Numerical examples are presented in Section 4,
and the paper is concluded in Section 5.

2. Related work

The G–L, R–L, and Caputo definitions are the most
commonly used definitions of fractional calculus for the
Euclidean measure. The R–L and Caputo definitions use the
Cauchy equation, so they are computationally complex.
The G–L definition expresses a function using a weighted
sum around the function. It is appropriate for image
processing applications. According to [16], the G–L defined
v-order differential of signal sðtÞ is
G
aD

vs xð Þ9
t

limh-0h
�v �1ð Þm ∑

n�1

m ¼ 0

Γ vþ1ð Þ
Γ mþ1ð ÞΓ v�mþ1ð Þsðt�mhÞ; ð1Þ

where the duration of s tð Þ is a; t½ �, vAR (and may be a
fraction), h¼ ðt�aÞ=ðnÞ is the step size, and ΓðxÞ ¼ ðx�1Þ! is
the gamma function of x. Eq. (1) shows that the G–L
definition in the Euclidean measure extends the step
from integer to fractional numbers, and thus it extends
the concept from integer to fractional differentiation.
G–L defined fractional calculus can be easily calculated. It
only depends on the discrete sampling value of s t�kð
t�að Þ=N� �Þ (which correlates to s tð Þ) and is not related to

the value of the derivative or integral.
Next, we analysis the influence that fractional order

differentiation has on a signal. The Fourier transform of the
signal s tð Þ is

FT Dvs xð Þ� �¼ iωð ÞvFT s tð Þ½ �� ∑
n�1

k ¼ 0
iωð Þk d

v�1�k

dxv�1�k
s 0ð Þ; ð2Þ

where i denotes the imaginary unit, and ω represents the
digital frequency.

The amplitude characteristic is an even function and the
phase characteristic is an odd function. We have analyzed

the characteristics of the fractional differential filter for
ω40. The frequency response of the fractional differential
filter is given in Fig. 1.

We have observed that the frequency response to
fractional differential filter is nonlinear when v¼ 0. Addi-
tionally, the v-order fractional differential is an all-pass

filter and its frequency response is d̂
vðωÞ ¼ iωð Þv. When

vo0, the filter is a fractional integrator and a singular low-
pass integral filter, as shown in Fig. 1(b). When v40, it is a
fractional derivative operator and its frequency response is

lim ωj j-1 d̂
vðωÞ

��� ���-1. Here, d̂
vðωÞ is a singular high-pass

differential filter (see Fig. 1(a)). If v increases, the transmis-

sion bands of d̂
vðωÞ become narrower and the high-pass

characteristic is stronger. In the low-frequency section of
0oωo1, the preservation magnitude of low-frequency
contours using fractional differential is superior to that by
a first-order derivative. We consider that the gray scale
does not significantly change in an image's smooth area.
The texture features in a smooth area may be significantly
attenuated and its differential result may be nearly zero.
For this reason, the integral differential linearly attenuates
the texture features, and cannot preserve them in these
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Fig. 1. Frequency response of the fractional differential filter: (a) positive
and (b) negative orders.
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