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a  b  s  t  r  a  c  t

The  measurements  of  bio-signals  are  always  subject  to interference  from  noise,  which  would  be  able  to
affect the research  results.  In the present  study,  we  introduce  a  technique  to  detect  the  signal  quality  by
using  ensemble  empirical  mode  decomposition  (EEMD)  and  Monte  Carlo  verification.  We  first  decom-
pose  the  original  signals  into  several  intrinsic  mode  functions  (IMFs)  and  calculate  the  average  distances
between  the  signal  IMFs  and  the  negative  (−1)  slope  line  in Monte  Carlo  verification.  Then,  the  approx-
imate  amount  of  white  noise  percent  level  in original  signal  could  be  obtained  via  corresponding  to the
created  curve  of distance  and  noise  percent.  This  new  proposed  technique  makes  the  approximate  white
noise  percent  level  could  be obtained  much  easier  via  a simple  distance  index  through  the EEMD  and
Monte  Carlo  verification  methods.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Measurements of physiological signals are always subject to
interference from noise, which might affect the research result.
Also, in the natural systems, physiological signals are non-linear
and non-stationary. Some linear and stationary assumptions might
probably be inaccurate. In 1998, empirical mode decomposi-
tion (EMD) was proposed by Huang et al. [1] as an adaptive
time–frequency data analysis algorithm that could be applied in
both non-linear and non-stationary signals. EMD  could decom-
pose the signal to different intrinsic mode functions (IMFs) from
the highest to the lowest frequency in time domain. This algo-
rithm was widely applied in many research areas such as oceans,
atmosphere, earthquake analyses, etc. Briefly, the steps of EMD
algorithm included as follows. Firstly, it obtains the local maxima
and minima as upper and lower envelopes by cubic spline. Also,
the mean envelope could be obtained in this step. Then, it decom-
poses the signal via calculating the difference between the original
signal and the mean envelope. The result is the first IMF. Finally,
the decomposed signal would be treated as the input data. Then
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repeat the steps and decompose the signal until the signal becomes
a monotonic function. The equation of EMD  could be expressed as
follows:

x (t) =
n∑

i=1

Ci (t) + Rn (t) , (1)

where x(t) is the original recorded signal data in time domain, Ci(t)
is the ith IMF, and Rn(t) is the residue.

Therefore, we could reconstruct the signal by choosing appro-
priate IMFs to filter the noises in the signal [2–6]. However, one
of the major drawbacks of EMD  algorithm is the mode-mixing
problem, which is defined as a signal IMF  consists either of sig-
nals on widely disparate scales, or a signal of a similar scale
located in different IMF  components [2]. To overcome the mode-
mixing problem, Huang et al. [2], in 2009, proposed another
noise-assisted algorithm named ensemble empirical mode decom-
position (EEMD). The steps of EEMD included:

Step (1) Create a white noise background which would populate
the whole time–frequency space and add the original signal into the
white noise.

Step (2) Decompose the signal into IMFs.
Step (3) Repeat these two steps. In the end, the means of corre-

sponding IMFs of the decompositions could be obtained as the final
result [2,3].
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Fig. 1. Monte Carlo verification of 7 IMFs of an ECG signal to which has been added
10%  white noise.

When the signal is added to the uniform white noise back-
ground, the bits of the signal would project onto the appropriate
scale [3,4]. The purpose of creating a white noise background and
adding it into the signal is to make the values of EMD  upper and
lower envelopes more easily obtained and further improve the
mode-mixing problem.

Based on the numerical experiments in the previous study [7],
Monte Carlo verification could be applied in determining the rela-
tionships within signal IMFs. For example, Fig. 1 shows the Monte
Carlo verification of decomposition for an ECG signal with 10%
standard deviation (SD) white noise added [7]. The groups of dots
from the upper left to the lower right indicate the energy density
as a function of the averaged period for white noise IMFs [3,4,7–9].
The significant asterisks with numbers on the top are the signal
IMFs of the ECG signal with 10% white noise.

For white noise, the slope between energy density and averaged
period is equal to −1. In other words, if the slope of IMF  of the orig-
inal signals is more closely approach −1, it means there are more
noise and less signal information within this IMF  [3,4,7–9]. The dis-
tance between the line and the IMF  components would decrease
along with an increasing percentage of white noise. In the present
study, we introduce a new approach to detect the signal quality
based on using EEMD and Monte Carlo verification to calculate this
distance corresponding to the approximate amount of white noise
percent in the original signal.

2. Methods

2.1. Creating a corresponding curve

To realize the white noise percent level, we first have to create
a corresponding curve. The curve included the white noise percent
in x-axis and the averaged distance index in y-axis so that the noise
percent would be able to correspond with the average distance. The
curve was created as the following steps:

Step (1) Add different white noise percent: in amounts ranging
from 10% to 100% were added into the original signal.

Step (2) Decompose the signal via EEMD method: decompose
the signal to 7 IMFs. In the present study, the amplitude of the
added white noise background in EEMD is 0.2 × standard deviation
(SD) of the original signal, same as the suggested amplitude of the
added white noise background in the previous literature [2].

Step (3) Perform Monte Carlo verification: in this step, the char-
acteristics of IMF  components and the line could be seen.

Step (4) Normalize IMF  1 onto the negative (−1) slope line on
Monte Carlo verification figure: in order to avoid the influence of
the added white noise in EEMD, the added white noise background
would probably further affect the average distance. In this step, we
shifted all IMFs, and normalized IMF  1 onto the negative slope line
so that the distance between IMF  1 and the negative slope line is
0. Normally, the frequency of noise is higher, and higher frequency
would be decomposed in the first few IMFs. IMF  1 also included the
added white noise in EEMD. Through the normalization, the effect
of added white noise background in EEMD could be avoided. The
positions of IMFs 2–7 were also been shifted following the shifted
IMF  1.

Step (5) Calculate the average distance between the rest IMFs
(IMFs 2–7) and the negative slope line in Monte Carlo verification
of every percentage scale: finally, the curve could be created.

To verify the distance is decreasing along with the increasing
noise percent, we first simulate sine and cosine waves. The white
noise from 10% to 100% was  added to the original sine and cosine
waves. Then, we follow the steps 2–5 as described previously, and
the averaged distance curve could be obtained. Because the sig-
nal is random, we  repeat the steps for 10 times in each percent
scale. Therefore, 10 averaged distance values in every percent scale
would be obtained in the end. We  then combine these 10 values to
one curve by taking the mean in each percent scale. The decreased
averaged distance with an increasing noise percent could be seen in
Fig. 2. This figure demonstrates the tendency that the average dis-
tance will approach to a line with slope is equal to −1 if the original
signal has more white noise.

2.2. Real ECG signal

To evaluate the real ECG signal, we have to create the corre-
sponding curve of an actual ECG signal. Also, the ECG signal that
has less interference is required. We  first downloaded 30 fetal ECG
signals of the first thorax electrode from non-invasive fetal elec-
trocardiogram database in PhysioBank on PhysioNet website [10],
and randomly took part of the signal data with length 10,000 of the
downloaded 30 ECG signals to create the corresponding curve. The
record numbers of thorax 1 electrode of the 30 ECG data are ecgca
102, 115, 127, 154, 192, 224, 252, 274, 290, 300, 308, 323, 368, 384,
392, 410, 416, 436, 444, 445, 473, 515, 571, 585, 595, 597, 621, 629,
649, 659 in the database. The methods of creating the correspond-
ing curve were same as the steps mentioned previously in Section
2.1. Fig. 3 demonstrates the corresponding curve of 30 ECG data.
After the procedures mentioned in Section 2.1 were completed, we
combined the 30 ECG corresponding curves into one curve by taking
the mean value in each percent scale. The averaged distance values
and the corresponding curve are shown in Table 1 and Fig. 3.

Table 1
Mean distance value and standard deviation of the 30 data mean curve.

White noise (%) Mean ± standard deviation (SD)

10 3.621 ± 0.023
20  2.792 ± 0.022
30  2.281 ± 0.021
40  1.928 ± 0.016
50  1.652 ± 0.02
60  1.449 ± 0.027
70  1.303 ± 0.027
80  1.206 ± 0.025
90  1.132 ± 0.041

100 1.033 ± 0.023
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