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a  b  s  t  r  a  c  t

In  this  work  we  employ  a nonlinear  data  analysis  method  called  recurrence  quantification  analysis  (RQA)
to  analyze  differences  between  sleep  stages  and  wake  using  cardio-respiratory  signals,  only.  The  data
were recorded  during  full-night  polysomnographies  of  313  healthy  subjects  in nine  different  sleep  lab-
oratories.  The  raw  signals  are  first normalized  to common  time  bases  and ranges.  Thirteen  different
RQA  and cross-RQA  features  derived  from  ECG,  respiratory  effort,  heart  rate  and  their  combinations  are
additionally  reconditioned  with  windowed  standard  deviation  filters  and  ZSCORE  normalization  proce-
dures leading  to a total feature  count  of 195. The discriminative  power  between  Wake,  NREM  and  REM
of  each  feature  is  evaluated  using  the Cohen’s  kappa  coefficient.  Besides  kappa  performance,  sensitivity,
specificity,  accuracy  and  inter-correlations  of the best 20 features  with  high  discriminative  power  is  also
analyzed.  The  best  kappa  values  for each  class  versus  the other  classes  are  0.24,  0.12  and  0.31  for  NREM,
REM  and  Wake, respectively.  Significance  is  tested  with  ANOVA  F-test  (mostly  p < 0.001).  The  results  are
compared  to  known  cardio-respiratory  features  for  sleep  analysis.  We  conclude  that  many  RQA  features
are suited  to discriminate  between  Wake  and  Sleep,  whereas  the  differentiation  between  REM  and  the
other  classes  remains  in  the midrange.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In order to diagnose sleep or sleep related disorders, nowa-
days, polysomnography (PSG) is performed to record physiological
data over a whole night in a sleep laboratory. Its key component is
the measurement of cerebral activity with electroencephalography
(EEG). Several electrodes have to be applied to the patients scalp
at defined positions which can only be done by trained persons.
In addition, electrocardiogram (ECG), respiratory activity, muscu-
lar activation, i.e. electromyogram (EMG), body temperature and
eye movements, i.e. electrooculogram (EOG), are monitored. The
amount of different parameters already evokes a high complex-
ity of such recordings. With increasing age, chronic illnesses and
sleep disorders occur more often. The demographic change will not
allow each subject with potential sleep disorder to be analyzed in a
sleep laboratory as this is too cost- and time-intensive. Alternatives
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need to be established to explore sleep in more convenient environ-
ments, for example at home. Several studies show that it is possible
to perform sleep staging to a certain extent using cardio-respiratory
signals and body movements [4,6,25,30,31,41]. For example fre-
quency and time-frequency analysis are applied on cardiac data
to determine sleep or sleep-related disorders, such as sleep disor-
dered breathing or sleep apnea [17,23]. The measurement of cardiac
and respiratory signals can be transferred to the home environ-
ment more easily than EEG measurements, e.g. by using wearable
sensor suites [21] or integrating the sensors into the bed mattress
or pillow [9]. New methods and algorithms have to be developed
to extract relevant data and multi-modal (coupled) signals using
less sensors. Park et al. and Mita for example show improved algo-
rithms to derive respiration from ECG measurements [36,38]. The
aim of the research in this domain is to get an accurate estimate of
sleep stages without the need of EOG, EMG  or even EEG recordings.
Recording in a familiar environment helps reducing the so-called
first night effect biasing the regular sleep behavior. It also allows
long-term measurements that are more representative than only
one single night.

Sleep is a very complex physiological process, not yet com-
pletely understood, in which the parasympathetic nervous system
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(NS) predominantly controls the sleep depth by regulating the
body temperature, heart rate and breathing activity. However, the
sympathetic NS acts against it, so that the body is always alert
to external stimuli [42]. It is obvious that sleep is essential and
vital as sleep deprivation results in serious behavioral and psy-
chological disorders that finally lead to obesity, cardiovascular
morbidity, traffic accidents and death [1]. In this work we analyze
cardio-respiratory signals across wake and sleep stages at night. We
employ recurrence quantification analysis (RQA), which is known
to be a powerful tool to study complex (physiological) systems. RQA
has already successfully been applied to EEG data [44] to distinguish
between sleep stages. Smietanoswki et al. determined several RQA
features using recurrence plots on heart rate (HR) signals to derive
dynamics of the heart rate variability (HRV) in healthy subjects and
patients with obstructive sleep apnea (OSA) [43]. They found out
that the change of recurrences between healthy and OSA subjects
is different, arising from a more complex heart rate dynamic for the
rapid eye movement (REM) stage. RQA is also an adequate method
to study the nonlinear dynamic properties of QT and RR intervals
during acute myocardial ischemia [39].

Terrill et al. apply RQA features, amongst others, solely on respi-
ratory effort (RE) signals to classify 30 s epochs of infant sleep into
Wake,  REM and NREM stages [46]. They show that most of the
computed RQA features are top-rated by a feature selection algo-
rithm and contribute to better performance. Another promising
approach for sleep staging is the exploration of phase synchro-
grams by means of RQA, as proposed by Nguyen et al. [37]. That
study was also performed on data acquired from healthy infants
and additionally on simulated data to show the improvements of
the method compared to conventional methods to analyze syn-
chrograms. Cardio-respiratory phase synchronization (position and
number of heartbeats within respiratory cycles), which is often
inspected with synchrograms, significantly changes with sleep
stages, as discovered by Bartsch et al. [2].

However, to the knowledge of the authors, no work was
published employing RQA on both, exclusively raw cardiac and
respiratory data, for adult sleep stage investigation. Therefore,
in this work, we concentrate on extracting thirteen of the
most common RQA features from ECG, RE, HR signals and the
two combinations of {ECG+RE} and {RE+HR} to determine the
most discriminative features between different sleep stages and
wake.

This paper first gives a general overview of RQA as a quanti-
fying description of recurrence plots (RPs), succeeded by a list of
extracted RQA features. Then, it describes the employed data set
and signal preprocessing steps for RQA, followed by a summary of
the RQA embedding parameters. Finally, the ability of 195 com-
puted cardio-respiratory RQA features derived from 313 whole
night recordings of different subjects – representing more than
2300 h of data – to distinguish between NREM,  REM and Wake stages
is presented and discussed.

2. Materials and methods

2.1. Recurrence quantification analysis

Recurrence quantification analysis (RQA) is a method for
describing recurring states in the phase space of dynamic systems.
The concept of recurrence was introduced by Henri Poincaré in
1890: the trajectory of a classical system will return infinitely many
times to a limited region in phase space [15,40]. Often, only one time
series xn(t) of a complex system �x in d dimensions (�x ∈ R

D) is observ-
able. For this case, Takens proposed in 1981 a time delay embedding
technique to reconstruct the phase space of the original system.
Embedding m ≥ 2 · D + 1 (correlation dimension D) sampling points

of the discrete time series with delay � for each time ti, then �̂x is a
reconstruction of the original trajectory:

�̂x(ti) =
m∑

k=1

xn · (ti + (k − 1) · �) · �ek, (1)

with �ek as the unit vector of the dimension k. A diffeomorphism
exists, so the embedding preserves the properties of the original
attractor [34,45].

To visualize recurrences in multidimensional phase space, Eck-
mann et al. presented recurrence plots (RPs) in 1987 [11]. An RP is
an illustration of the binary recurrence matrix �R.  The entry Ri,j is
set to 1 (black pixel in the plot) if two states at different times are
similar, i.e. the points �̂x(ti) and �̂x(tj) in phase space fall inside a ball
of radius ε:

Ri,j(ε) = �(ε − ‖�̂x(ti) − �̂x(tj)‖) i, j = 1, . . .,  N, (2)

where � is the Heaviside step function and || · || is a norm, e.g. the
Euclidean. RPs can be interpreted as a generalized form of autocor-
relation. The main diagonal line represents the identity. Diagonal
lines in general indicate deterministic behavior, regular patterns
of parallel lines reveal a periodicity. Isolated points are typical for
chaotic systems, whereas a rectangular patch results from an accu-
mulation of subsequent states in a limited region of phase space
during laminar sections of a process.

For cross-recurrences of two  time series xn and yn, embedded
in the same phase space, (2) is modified for cross-recurrence plots
(CRP) in an analog way  [34,48,50]:

CRi,j(ε) = �(ε − ‖�̂x(ti) − �̂y(tj)‖). (3)

Thus, it is possible to study interrelations between the two  sig-
nals, e.g. synchronization, time shift or distortion. Unlike RPs, CRPs
are usually not symmetric and therefore bowed lines may  appear.
Examples of RPs and CRPs applied to ECG, respiratory effort and
heart rate samples are shown in Fig. 1. Their creation and interpre-
tation will be discussed in the upcoming sections.

In order to quantify the two dimensional plots for computerized
analysis of complex dynamic systems, Zbilut and Webber offered
in the 1990s a few features, that measure the percentage of recur-
ring states REC and the amount of diagonal lines: DET describes
the degree of determinism and ENT is the Shannon entropy con-
cerning deterministic sections [47,49]. Additionally, Marwan et al.
demonstrated in 2002, that the information contained in vertical
structures (laminarity LAM, trapping time TT and maximum length
Vmax) is useful to detect chaos-chaos transitions. These RQA  features
were successfully applied to heart-rate variability data to predict
life-threatening cardiac arrhythmia [35]. Besides, recurrence times
and their entropy describe the periodicity [14,27]. In recent years,
features from graph theory were added, which quantify the density
of recurring states in phase space [3,10,33].

The Cross Recurrence Plot Toolbox for MATLAB® [32], which is
used in this work, provides a way to compute windowed RQA. Espe-
cially for long data sets containing several hundreds of thousands
data points and to achieve an acceptable resolution it is necessary
to analyze small sub-RPs stepping through the signal. A total of
thirteen different RQA features is computed. They are REC, DET,
ENT, L, Lmax, LAM, TT,  T(1), T(2), Vmax, Trec, clust and trans. Detailed
descriptions and feature interpretations are specified in the follow-
ing Section 2.2.

On the one hand, particularly for physiological systems of
complex dynamics an important advantage of RQA is that no
assumptions on the time series are required, like linearity in Fourier
transforms [50]. On the other hand, it is challenging to find opti-
mum  embedding parameters, because no strict rules exist. For
an adequate embedding dimension to reconstruct the original
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