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a b s t r a c t

In this paper, we address the multiple measurement vectors problem, which is now a hot
topic in the compressed sensing theory and its various applications. We propose a novel
heuristic search algorithm called HSAMMV to solve the problem, which is modeled as
a combinatorial optimization. HSAMMV is proposed in the framework of simulated
annealing algorithm. The main innovation is to take advantage of some greedy
pursuit algorithms for designing the initial solution and the generating mechanism of
HSAMMV. Compared with some state-of-the-art algorithms, the numerical simulation
results illustrate that HSAMMV has strong global search ability and quite good recovery
performance.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The sparse recovery problem is of great importance in
compressed sensing (CS) theory [1–3], and it focuses on
finding the sparsest possible solution of the underdeter-
mined linear system of equations Ax¼b for given matrix
AARm�n ðmonÞ and vector bARm. The problem can be
written as

min
x

‖x‖0 s:t: Ax¼ b ð1Þ

where ‖x‖0 denotes the number of nonzero entries of x.
There is only a single measurement (i.e., the vector b) in

problem (1), so it is referred to as the single measurement
vector (SMV) problem. A natural extension of SMV, multiple

measurement vectors (MMV, also called joint sparse recov-
ery), attracts increasing attention of the research community
and can be used in source localization [4–6], multi-task
learning [7] and neuro-magnetic imaging [8] etc. In MMV,
we are given multiple measurements BARm�l with the
number of snapshots l41, and aim to solve the linear system
of equations AX¼B in which X is supposed to be jointly
sparse (i.e., only a few rows are nonzero). The noiseless MMV
can be modeled as

min
X

jRðXÞj s:t: AX ¼ B ð2Þ

where RðXÞ9f1r irnjXi;�a0g denotes the row support
of X, Xi;� denotes the i-th row of X, and j � j represents the
cardinality of a set.

In [8–10], the authors have proved that a solution X of
AX¼B is the unique solution of (2) if

R Xð Þ
�
�

�
�o sparkðAÞþrankðBÞ�1

2
ð3Þ
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where the quantity sparkðAÞ denotes the smallest number
of columns from A that are linearly dependent.

The model (2) is noiseless, and it is oversimple. In
practice, it generally cannot avoid modeling error and
measurement error. And we often modify the model with
additive noise to deal with both situations. An MMV with
additive noise can be stated as

min
X

jRðXÞj s:t: ‖AX�B‖Frɛ ð4Þ

where B¼ AXþN, N is the additive noise and ɛZ0 is the
error bound. It is obvious that problem (2) is a particular
case of problem (4) with N¼ 0.

Problem (4) is NP-hard in general [2], and many efficient
algorithms have been proposed to solve it, such as l1-SVD
[4], M-FOCUSS (FOCal Underdetermined System Solver for
MMV) [8], M-OMP (Orthogonal Matching Pursuit for MMV)
[9], ReMBo (Reduce MMV and Boost) [10], RA-ORMP (Rank
Aware Order Recursive Matching Pursuit) [11], CS-MUSIC
(Compressive MUSIC) [12], RPMB (Randomly Project MMV
and Boost) [13], q-thresholding algorithm (qZ1) [14],
SA-MUSIC (Subspace-Augmented MUSIC) [15], T-MSBL (a
Temporal extension of the Sparse Bayesian Learning algo-
rithm for MMV) [16], AMPMMV (Approximate Message
Passing based MMV algorithm) [17], and ZAPMMV (Zero-
point Attracting Projection algorithm for MMV) [18].

Although the existing algorithms can achieve satisfactory
recovery under specific conditions, they perform well only
when the number of snapshots is relatively large or the
sparsity level is relatively small [12,13]. Moreover, many of
the existing algorithms perform unsatisfactorily in the rank-
defective case (i.e., rankðXÞo jRðXÞj [15]), such as M-OMP,
M-FOCUSS and l1-SVD.

One main reason resulting in the aforementioned short-
comings is that the existing MMV algorithms often produce
sub-optimums of problem (4). The sparse recovery problem
is essentially a combinatorial optimization [2], and we know
that the simulated annealing (SA) algorithm [19] is very
efficient in finding the global optimums for the combinatorial
optimization problems. Therefore, we take advantage of SA
to propose a new MMV algorithm to overcome the short-
comings in this paper. We first model the MMV problem as a
combinatorial optimization, and then propose a novel heur-
istic search algorithm termed HSAMMV to solve the modeled
problem based on SA and some existing CS algorithms. In
HSAMMV, the initial solution is designed using the q-thresh-
olding algorithm (qZ1) [14], and the generating mechanism
is designed using the pruning technique existed in SP (Sub-
space Pursuit) [20] and CoSaMP (Compressive Sampling
Matching Pursuit) [21]. Compared with some state-of-the-
art algorithms, the numerical simulation results illustrate that
HSAMMV has strong global search ability and quite good
recovery performance. Specifically, HSAMMV still performs
well when the number of snapshots is relatively small or the
sparsity level is relatively large, and it is effective in the rank-
defective case and has a robust performance to the sparsity
level. In a word, HSAMMV can well overcome the aforemen-
tioned shortcomings of the existing MMV algorithms to some
extent.

Throughout the paper, we use the following notations.
For any matrix MARm�n, Mi;� denotes the i-th row of M,

and M�;j denotes the j-th column of M. The row support
of M is defined as RðMÞ9f1r irnjMi;�a0g. For a column
full-rank matrix H, its pseudo-inverse is defined by H† ¼
ðHTHÞ�1HT , where ‘T’ represents matrix transposition. j � j
represents the cardinality of a set, and ⌊�c denotes the
flooring operation for a real number (i.e., ⌊ςc equals to the
nearest integer less than or equal to ς). The matrix M is
called K-jointly sparse if jRðMÞjrKom, where K is called
the sparsity level of M. ‖M‖F denotes the Frobenius norm
of the matrix M, and ‖x‖q ðqZ1Þ represents the lq norm of
the vector xARn. Suppose GDf1;2;…;ng is a nonempty
subset, the vector xG consists of the entries indexed by
iAG, the matrix MG is composed of the columns fM�;jgjAG,
and the matrix MG;: denotes a matrix composed of the
rows fMj;�gjAG.

The rest of the paper is organized as follows. In Section 2,
we propose the HSAMMV algorithm and give some theore-
tical analysis. Simulation results are reported in Section 3,
and the conclusions are drawn in Section 4.

2. HSAMMV: a heuristic search algorithm for MMV

In this section, we first give a brief introduction to SA in
Section 2.1, next design the main elements of HSAMMV in
Section 2.2, later give the computational complexity analysis
of HSAMMV in Section 2.3, and then compare HSAMMV
with some existing works in Section 2.4.

2.1. A short review of SA

Simulated annealing (SA) algorithm was proposed by
Kirkpatrick et al. [19] in 1983 based on the annealing of
metals. The main advantage of SA is the ability to avoid
being stuck at local minimums because it permits accept-
ing a less optimal solution (as compared with the current
one) with a positive probability, and hence it has strong
global search ability [22–24]. SA has attracted much atten-
tion due to its success in solving several large scale and
complex problems, including some NP-complete problems
such as Traveling Salesman Problem (TSP) [25] and the
Flow Shop Scheduling Problem (FSSP) [26].

Consider a minimization problem mintAΩgðtÞ, where Ω is
the solution set and g : Ω-R is a cost function, the proce-
dure of SA is summarized in Algorithm 1. In the algorithm,
the generating mechanism is a method to select a new
solution from the neighborhood of the current solution; and
the annealing schedule is a sequence of positive real num-
bers, which are decreasing to zero, for setting temperatures.

Algorithm 1. SA [27] for solving mintAΩgðtÞ.
Initialization: the initial solution t0AΩ, the number of the outer-

loop iteration k¼1.
The k-th outer-loop iteration (kZ1):
Step 1: (The inner-loop at Tk) First, set t0k ¼ tk�1 and j¼1; next,

repeat steps 1.1–1.3 until some inner-loop stopping criterion is
met and obtain tk; then goto step 2.

Step 1.1: Randomly generate a neighboring solution yk
j
of the

current solution tj�1
k according to some generating mechanism

and compute gðyjkÞ.
Step 1.2: Calculate Δj

k ¼ gðyjkÞ�gðtj�1
k Þ, and accept yk

j
if pjkZη, where

η is a random number uniformly chosen in ½0;1� and
pjk ¼minð1; expð�Δj

k=TkÞÞ.
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