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a  b  s  t  r  a  c  t

Recently,  a novel  identification  method  for a nonlinear  dynamic  model,  called  nonlinear  Linear Frac-
tional  Representation  (NL-LFR)  model,  has  been  developed.  The  model,  composed  of a  static  nonlinearity
(SNL)  surrounded  by  linear  dynamics,  can  account  for  both  nonlinear  feed-forward  and  nonlinear  feed-
back  effects.  Using  two  classical  frequency  response  measurements,  the  SNL  is automatically  recovered
in  a user-friendly  and  efficient  (non-iterative)  way.  In this  contribution,  the  method  is illustrated  on
a glucoregulatory  benchmark  dataset  (insulin–glucose  relationship  of the  human  body).  The  research
on  insulin–glucose  models  is  essential  to develop  methodologies  to control  the  blood  glucose  level  in
diabetes  patients.  The  obtained  results  outperform  earlier  results  on the  same  benchmark  data,  while
providing  an  excellent  accuracy-complexity  tradeoff.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

To be able to describe measured data with an increased accuracy,
e.g. over a wide amplitude range, it is important to explicitly incor-
porate nonlinearities into the model. Until now, a range of nonlinear
models have been proposed [1–9]. However, most of them either
require a (typically) quite large number of parameters (i.e., they are
not parsimonious enough) or are not well suited to represent ubiq-
uitous nonlinear feedback effects, such as amplitude-dependent
resonance frequencies and dampings (i.e., they are not flexible
enough). The nonlinear Linear Fractional Representation (NL-LFR)
model belongs to the popular class of nonlinear block-oriented
models. It offers a good flexibility-parsimony tradeoff, and is there-
fore applicable to a wide range of scientific domains. Block-oriented
nonlinear models [1,7] can be defined as interconnections of lin-
ear dynamic elements (a.k.a. Linear Time Invariant parts or LTI
blocks) and static nonlinear elements (a.k.a. Static NonLinearities
or SNL blocks). The most studied block-oriented model structures
are cascade structures of the form LTI-SNL, SNL-LTI and LTI-SNL-
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LTI (known as Wiener, Hammerstein and Wiener–Hammerstein
model, respectively).

The NL-LFR model, to be discussed in Section 3, is more general
than these cascades and surrounds the SNL by arbitrary dynamics.
We refer to [10] for a complete description of these matters and of
the benefits of the model. In this paper, an insulin–glucose bench-
mark problem (see Section 2) is presented as an application of the
NL-LFR model. The results and comparison to earlier results with
different model structures are shown in Sections 4–6. Section 7 con-
cludes the paper.

2. Insulin–glucose modelling problem

2.1. Aim

To enhance the lives of (type 1) diabetes (mellitus) patients,
research is conducted on the regulation of the blood glucose level
[11]. E.g., glucose control schemes for an artificial pancreas have
been developed for the insulin–glucose metabolism [12], based on
a Wiener (LTI-SNL) model and nonlinear sliding mode control. More
sophisticated simulation insulin–glucose models built from first
principles exist [13,14], but are avoided for control due to a large
computational effort involved with the implementation and model
parameters are very difficult to estimate from the available patient
data. In this work, as in [15], simplified nonlinear models, for use
in control in a later stage, represent the system as a replacement
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Fig. 1. (Concatenated) input and output signals for estimation (dataset A): random-
phase multisines at 12 operating points.

for the sophisticated models. To estimate a simplified nonlinear
model, a data-driven, measurement point of view is taken here: the
insulin is treated as a measured input and the glucose concentration
as a measured output of the glycoregulatory system. In this paper,
estimation results for the NL-LFR model are presented, and are com-
pared with the Wiener and other nonlinear models. The data from
which the simplified nonlinear models are estimated, are priorly
generated through the Dalla-Man model [14]. The same data as in
[15] are used: partly with a multisine1 insulin input (dataset A) and
partly a multisine input with band-limited pulses superimposed,
intended to simulate a more realistic situation (dataset B). The data
are available at 5 multisine amplitudes and 12 DC-levels. Please
note that the estimation of a (simplified) nonlinear model is based
on simulated data. The simple reason is that performing real mea-
surements on patients can be very expensive, and that high-quality
results on simulated data may  be required to convince the medi-
cal experts that performing a real measurement campaign makes
sense.

2.2. Benchmark datasets

The benchmark datasets used consist of steady-state2 measure-
ments of the glucose response of the Dalla-Man model to an insulin
input at different basal (DC) glucose levels, while keeping the meal
input zero [15].

Note that, for both datasets, only the data at a single input
std3-value is taken as estimation data and another (slightly lower)
std-value is taken as validation data, only intended to assess the
model quality. The input (insulin4) and output (glucose) signals for
datasets A and B are depicted in Figs. 1 and 2, respectively.

The properties of both datasets are listed in Table 1.
To compare the results, the following measure for the fit quality

is used on the validation data:

Fit% =
(

1 − ‖y − ŷ‖2

‖y − ȳ‖2

)
× 100

1 The use of multisine signals (among other types of variations), to represent low
amplitude slow fluctuations around a basal insulin level is known in the field of
artificial pancreas, mainly for the identification of control-relevant models [16]. The
use  of such signals taking into account patients safety limits, would be possible.

2 In the context of this paper, “steady-state” means “after die-out of the transient
phenomena”, i.e. the periodic regime response is considered.

3 std = standard deviation
4 It can be remarked that, at some places, negative insulin values are visible. This

is  not realistic. However, the idea behind using negative values is to implement
fluctuations below the basal (viz., average) insulin levels.

Fig. 2. (Concatenated) input and output signals for estimation (dataset B): band-
limited pulses superimposed on a random-phase multisine at 12 operating points.

with y, ŷ, and ȳ the steady-state measured output signal, the steady-
state simulated model output signal and the mean value of the
measured output (constant signal), respectively. Distinct values for
the fit quality for the different operating points will be considered.

3. Nonlinear LFR model

The focus of this paper is to identify an NL-LFR model on the
insulin–glucose benchmark data. The model’s input and output are
represented by u and y, as shown in Fig. 3. The SNL has an input z and
output v. It has no memory effects, and can therefore be considered
as a simple nonlinear mapping fSNL : R  → R  operating on each input
sample z(k) (with discrete time index k):

v(k) = fSNL(z(k)) (1)

The linear part (LTI) connects the SNL and the model’s input
and output: the MIMO  LTI converts the two inputs, u and v, to two
outputs, y and z. Signals v and z are internal and not accessible for
measurement.

The MIMO-LTI part can, in general, be described as:

x(k + 1) = Ax(k) + Bu(k) (2)

y(k) = Cx(k) + Du(k)

Fig. 3. The NL-LFR model. The signals u, y, z and v represent the model input and
output and the SNL’s input and output, respectively (the identification method has
no access to measurements of z and v).
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