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a  b  s  t  r  a  c  t

This paper  presents  an  on-line  myoelectric  control  system  which  can classify  eight  prehensile  hand  ges-
tures  with  only  two electrodes.  The  overlapping  windowing  scheme  is  adopted  in the  system  leading
a  continuous  decisions  flow.  We  choose  mean  absolute  value  (MAV),  variance  (VAR),  the  fourth-order
autoregressive  (AR)  coefficient  and  Sample  entropy  (SampEn)  as  the  feature  set  and  utilize  the linear
discriminant  analysis  (LDA)  to reduce  the  dimension  and obtain  the projected  feature  sets.  The  current
projected  feature  set and  the  previous  one  are  “pre-smoothed”  before  the  classification,  and  then  a deci-
sion  is  generated  by  LDA  classifier.  To  get the  final  decision  from  the  decisions  flow,  the  current  decision
and  m  previous  decisions  are  “post-smoothed”.  The  method  mentioned  above  can obtain  a 99.04%  off-
line  accuracy  rate  and  a 97.35%  on-line  accuracy  rate  for individual  gesture.  By choosing  a  proper  value
of  m, this  method  can  also  get a 99.79%  accuracy  rate  for on-line  recognition  of  complex  sequences  of
hand  gestures  without  interruption.  In  addition,  a virtual  hand  has  been  developed  to  display  the  on-line
recognition  result  visually,  and  a proper  control  strategy  is proposed  to realize  the  continuous  switch  of
hand  gestures.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The surface electromyography (sEMG) signal is a noninvasive
electrical biosignal which can represent the muscles activities. As
a type of easy-acquired signal, it has been widely used to con-
trol peripheral devices [1,2], especially prosthetic limb [3]. During
the last decade, several mulitifunctional anthropomorphic pros-
thetic hands have been developed by some companies and research
institutions [4–9], such as i-Limb hand [4] and SmartHand [6].
Their appearance and size are similar to human hand and they
have 8-degrees of freedom at least. To control these prosthetic
hands to perform prehensile gestures for activities of daily liv-
ing, the pattern-recognition method in a supervised way  is widely
employed [10]. This method includes some fundamental process-
ing parts [10] (Fig. 1): data preprocessing, data windowing, feature
extraction, and classification.

The corresponding features can be extracted from different
types of muscle activities, and then these features are assigned to
classes that represent corresponding limb motions, which are the
patterns. These patterns are learned by an algorithm using some

∗ Corresponding author. Tel.: +86 15360880395.
∗∗ Corresponding author.

E-mail addresses: menfwang@scut.edu.cn, wang.nianfeng@gmail.com
(N. Wang), zhangxm@scut.edu.cn (X. Zhang).

part of the features, and the algorithm is then used to classify the
limb motions according to further features [11].

The accuracy of the motion classification depends very much
on the feature selection and extraction. A variety of EMG  features
have been proposed. They can be divided into three categories:
time domain, frequency domain, and time-frequency domain [1].
Each kind of features can represent the property of sEMG to some
extent; however, due to the nonstationarity of the sEMG signals,
it is very difficult for only one feature to reflect the most intrin-
sic property of the measured sEMG signals of a motion perfectly
[12]. Many researches tend to use feature set (the combination of
different features) to describe the sEMG signals of a certain motion
[13–19]. Phinyomark et al. [13] explored many combinations of dif-
ferent features and compared their performance in the recognition
of ten upper limb motions. It is concluded that the combination
of SampEn, the fourth order cepstrum coefficients (CC), root mean
square (RMS) and waveform length (WL) was considered the best
robust multiple-feature set. Ju et al. [14] successfully recognized
different hand grasps and in-hand manipulations by using multiple
features which included Willison Amplitude (WAMP) and Deter-
minism (DET).

The effectiveness of the algorithm for off-line sEMG pattern
recognition has been proven by many researches [16–18,20–24].
However, the biggest challenge is to gain a satisfactory accuracy
rate for on-line sEMG recognition. In the case of realtime control of
a prosthetic hand, a high accuracy rate is essential, and controlling
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Fig. 1. Block diagram of EMG  pattern recognition [10].

the prosthetic hand in an intuitive and close-to natural way  should
also be considered carefully. Khushaba et al. [15] used various fea-
tures and LIBSVM classifier to recognize ten individual fingers and
combined finger movements which gained approximately 92% off-
line and approximately 90% on-line classification accuracies. Chen
and Wang [16] successfully classified ten Chinese number gestures
on-line. Although they both realized the realtime recognition of dif-
ferent hand motions, the relax gesture must be inserted between
every two hand motions when the realtime recognition was run-
ning. It does not meet the grasp habit of a real human hand and the
switch of hand gestures should be continuous.

Based on our previous research on the off-line recognition [22],
we explore a realtime hand gesture recognition system which is
more intuitive and natural for users to control the prosthetic hand.
First, we adopt the overlapping windowing shceme [25] and use
the feature set including MAV, VAR, the 4th AR and SampEn for the
off-line training phase. Second, a post-processing method is used
to process the continuous decisions for the realtime recognition.
Finally, a virtual hand model is developed to show the recognition
result of the realtime system visually, and a proper control strategy
is employed to ensure that the virtual hand can change its gesture
continuously without being interrupted by the rest gesture.

2. Methods

2.1. Data collection

The eight prehensile hand gestures [22] including: cylindrical,
hook, lateral, point, spherical, tripod, tip and rest, as illustrated in
Fig. 2, were designed to test the recognition system. Their main
functions were described as follows:

1 Cylindrical: To grasp cylindrical objects, such as an ordinary cup.
2 Hook: To carry objects, such as a handbag.
3 Lateral: To hold flat objects, such as a credit card.
4 Point: To point a direction or hold something spindly, such as a

knife.
5 Rest: When there is no muscle contraction, the prothesis hand

extend all fingers to carry something, such as a book.
6 Spherical: To grasp small round objects, like a tennis ball.
7 Tripod: To carry small objects.
8 Tip: To pinch very small objects, such as a needle.

As these gestures mainly involve the flexion of both the thumb
and the rest four fingers, we chose the flexor pollicis longus (FPL)
and flexor digitorum superficialis (FDS) as the revelent muscles for
the acquisition of sEMG signals. Two DE-2.1 differential EMG  sen-
sors (Delsys Inc., Boston, MA)  were used to collect the sEMG signals
from the forearm of healthy subjects and they were placed above
the corresponding muscle, respectively. A Labview virtual instru-
ment (VI) was developed for collecting, displaying and storing the
EMG  signals for further processing. Fig. 3 showed the experimental
facility.

During the off-line phase, the gestures were shown on the
computer screen before the subjects performed, then the subjects
elicited a corresponding contraction for 5 s with a comfortable force
level to avoid muscle fatigue. Every gesture was repeated 10 times
and there was a resting period of 6 s between each contraction. Once
a gesture with ten repetitions was finished, the subjects had 5 min
to relax the muscles before the next gesture. The sampling rate was

1000 Hz. During the on-line phase, a virtual hand was  shown on the
computer screen to display the recognition result.

Five male subjects and one female subject who are able-bodied
with no neurological or muscular disorders were recruited to
participate in the experiments. All the subjects signed informed
consent forms.

2.2. Feature extraction and reduction

The overlapping windowing scheme was adopted to segment
the raw sEMG signals. In this paper, the window length was  defined
as 250 ms  [26] and the increment was  70 ms.  The number of win-
dows could be calculated by the following formula:

No. of windows = data length − window size
window increment

+ 1. (1)

According to our previous research [22], the optimal feature set
for the off-line recognition system included MAV, VAR and the 4th
AR. MAV  equals the mean of absolute value of sEMG signals ampli-
tude in a window. We use sEMG(i){1 ≤ i ≤ N} to denote the i-th point
in a sEMG window and use N to denote the length of the window.
Therefore, MAV  can be obtained by

MAV = 1
N

N∑

i=1

|sEMG(i)|. (2)

VAR of the sEMG signals is usually calculated as

VAR = 1
N − 1

N∑

i=1

sEMG(i)2. (3)

The 4th AR is a time series model of sEMG signals, which can be
defined as

sEMG(i) = w(i) +
p∑

k=1

aksEMG(i − k) (4)

where p is the model order (p = 4), ak are AR coefficients and w(i)
is the residual white noise. For the on-line recognition system, the
ability of robustness is essential. The on-line system should be able
to resist various disturbing factors. Phinyomark et al. [13] indicated
that the single robust feature was SampEn. In this paper we  added
the SampEn into our original feature set, which could be calculated
as follows [27]:

1. For a certain sEMG window containing N points, sEMG(i){1 ≤ i ≤
N} formed the N − n vectors:

xn(j){1 ≤ j ≤ N − n}, (5)

where xn(j) was the vector of n data points from sEMG(j) to
sEMG(j + n - 1).

2. The distance between two such vectors was defined to be:

d[x(j), x(k)] = max{|sEMG(j + h) − sEMG(k + h)|,
1 ≤ h ≤ N − 1, j /= k}. (6)

That is the maximum difference of their corresponding scalar
components.
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