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a  b  s  t  r  a  c  t

An  implementation  of the  independent  component  analysis  (ICA)  technique  for  three-dimensional  (3D)
statistical  shape  analysis  is  presented.  The  capabilities  of  the ICA  approach  to uncover  inherent  shape  fea-
tures  are  first  demonstrated  through  analysis  of  sets  of  artificially  generated  surfaces,  and  the nature  of
these  features  is  compared  to a more  traditional  proper  orthogonal  decomposition  (POD)  technique.  For
the surfaces  generated,  the ICA  approach  is  shown  to  consistently  extract  surface  features  that  closely
resembled  the  original  basis  surfaces  used  to generate  the  artificial  dataset,  while  the POD  approach
produces  features  that  clearly  mix the  original  basis.  The  details  of  an  implementation  of  the ICA approach
within  a  statistical  shape  analysis  framework  are  then  presented.  Results  are  shown  for  the  ICA decompo-
sition  of  a collection  of  clinically  obtained  human  right  ventricle  endocardial  surfaces  (RVES)  segmented
from  cardiac  computed  tomography  imaging,  and  these  results  are  again  compared  with  an  analogous
statistical  shape  analysis  framework  utilizing  POD  in lieu  of  ICA.  The  ICA  approach  is  shown  to  produce
shape  features  for  the RVES  that  capture  more  localized  variations  in  the  shape  across  the  set  compared
to  the  POD  approach,  and  overall,  the ICA approach  produces  features  that represent  the  RVES  variation
throughout  the  set  in  a considerably  different  manner  than  the  more  traditional  POD  approach,  providing
a  potentially  useful  alternate  to statistically  analyze  such  a set of  shapes.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Statistical shape analysis has been shown to provide a pow-
erful means to efficiently represent a large variety of shapes for
various applications, and especially for applications in medical
image analysis. In particular, statistical shape analysis has been
shown to be capable of providing shape-based features that can
be used to build effective metrics for classification and diagnos-
tic purposes in medicine [1–6]. In general, the key components
of statistical shape analysis frameworks for classification purposes
involve building a correspondence between the given set of shapes
(as could typically be obtained by medical image segmentation
from a population), statistically decomposing the shape set into
fundamental shape components, and then building features from
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the shape components that are suitable to cluster the shape set
into various groupings and/or build a classifier associated with
the application (e.g., pathological state) of interest. There have
been a wide variety of techniques developed and employed within
statistical shape analysis frameworks depending on the specific fea-
tures, restrictions, and/or objectives of the particular applications.
Furthermore, the statistical shape analysis work to-date has been
largely focused on developing the mathematical representation of
the shapes in a given set along with the preprocessing methods nec-
essary to build a correspondence between these shapes, including
aspects of topological mapping, shape alignment/registration, and
parameterization, while much less consideration has been given
to the method of statistically decomposing the shape set once this
correspondence is set. The vast majority of statistical shape anal-
ysis work thus far has used some form of principal component
analysis (PCA) (interchangeably referred to as proper orthogonal
decomposition (POD) or by other names depending upon the spe-
cific formulation and/or application) to decompose the shape sets
into fundamental components (i.e., modes or basis functions). PCA
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can be viewed as providing the orthogonal basis of the specific
order that is optimal in an average sense for representing the given
dataset. PCA has been shown to be useful in several of the examples
referenced above for extracting significant shape features, and yet,
PCA provides only one perspective to view the components of the
shape set of interest and is subject to the constraints of its formula-
tion (e.g., orthogonality and average L2 optimality), which may  or
may  not be optimally suitable for the given application.

An alternative statistical decomposition technique known as
independent component analysis (ICA) was established in [7] that
utilizes a considerably different approach compared with PCA.
Generally, ICA seeks to uncover the inherent patterns in a given
signal dataset by identifying the fundamental components that can
represent the dataset in a linear combination and are maximally
statistically independent from one another [8–11]. The derivation
of ICA has been approached with several different concepts and
tools, such as information maximization [12], maximum likelihood
estimation [13], and utilization of artificial neural networks [14].
Furthermore, ICA has been applied to extract independent features
in a diverse range of research fields, including image processing
[15,16], electroencephalogram (EEG) signal analysis [17,18], and
audio signal processing [19], among others. A large portion of
the prior work has been focused on processing one-dimensional
signals, yet, formulations have also been presented to consider
multi-dimensional signals, namely the multilinear ICA, which were
formulated to assess multiple “modes” of discrete signals within a
dataset [20–23]. ICA has shown promising capabilities in terms of
extracting substantially distinct features and utilizing these fea-
tures for further classification purposes compared with PCA, thus
leading to ICA being considered an alternative to PCA that may  be
preferable in some instances depending upon the application. ICA
and PCA have been directly compared in several works, including
applications in face recognition [24,25] and EEG signal processing
[17,18], with ICA being preferred in someinstances and PCA in oth-
ers.

ICA has seen minimal application in the area of statistical shape
analysis to-date, with the current contributions including [26,27],
which both sought to identify patterns related to the shape vari-
ation of cardiac structures (e.g., left and right ventricles) with
two-dimensional cross-sectional analysis (i.e., only analyzing line
segments from the cardiac structures). There has yet to be work
considering three-dimensional (3D) statistical shape analysis with
ICA. A likely contributor to the lack of work integrating ICA into 3D
statistical shape analysis is the lack of the necessary ICA formulation
to generally accommodate multi-dimensional and/or continuously
distributed shapes (i.e., signals), with the applications thus far only
considering single-dimension uniformly distributed (i.e., sampled)
discretized signals.

This work presents a formulation of ICA that is generally appli-
cable for analyzing multi-dimensional continuous signals, and that
is appropriate for 3D statistical shape analysis. The formulation
presented is focused on one particular and popular implementa-
tion of ICA known as FastICA [28,29], but the extensions presented
could easily be similarly applied to other existing ICA methods as
well. Sets of artificially generated shapes were analyzed to ver-
ify the ICA algorithm and the results are presented and compared
with a standard PCA (i.e., POD) algorithm. The ICA approach was
then implemented within a statistical shape analysis framework
(as previously developed by the authors and reported in [30]). The
shape analysis framework with ICA was applied to analyze a clini-
cally obtained set of 3D right ventricle endocardial surfaces (RVES),
and the results are again presented in comparison to the shape
analysis approach with POD as the statistical decomposition strat-
egy to show the substantial differences in the two techniques and
their outcomes as related to statistical shape analysis. As such, the
core contributions of this work are: (1) a uniquely formulated and

universally applicable ICA derivation and algorithm that can be
directly applied to 3D statistical shape analysis, and (2) the presen-
tation and examination of an ICA-based statistical shape analysis
workflow applied to analyze human RVES in comparison to the
previously built more standard PCA/POD-based approach [30]. The
work presented in this paper broadens the state of the art of ICA-
based signal processing to analyze not only vectorized discrete
signals, but also more complex continuous and/or non-uniformly
sampled signals, and, in particular, provides a useful alternate
path to statistical shape analysis for future disease diagnostic
purposes.

Section 2 presents the details of the ICA algorithm developed.
Section 3 shows the analysis of artificially generated shapes with
both ICA and POD, and outlines the statistical shape analysis frame-
work incorporating ICA along with the results of analyzing the
clinically obtained set of right ventricle endocardial surfaces with
both ICA and POD, which is followed by the concluding remarks in
Section 4.

2. ICA for shape analysis

The following formulation assumes that a given collection of n
shapes to be analyzed have already been parameterized and a cor-
respondence has been built (see [4] or similar works for examples
of how such a correspondence can be built), such that �ui(�x) defines
the three-dimensional (3D) cartesian coordinates of the surface of
the ith shape in terms of the coordinates �x in the common domain of
the parameterization �,  such that �x ∈ �.  The fundamental assump-
tion of ICA is that each shape function is a linear combination of m
hidden (latent) statistically independent basis functions (i.e., inde-
pendent components) as

�ui(�x) =
m∑

j=1

aij�sj(�x), for i = 1, 2, ..., n, (1)

where
{�sj(�x)

}m

j=1
is the set of m independent components and aij is

the modal coefficient corresponding to the ith shape and jth inde-
pendent component. Assuming each shape is arranged as a column
vector, the entire collection of the vector-valued functions can be
defined as⎡⎢⎢⎢⎣
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or

[U] = [A][S]. (3)

Therefore, to determine an estimate of the set of independent com-
ponents, [S], it is only necessary to estimate the left pseudoinverse
of the mixing matrix, [W] ≈ [A]−1, leading to

[̃S] = [W][U], (4)

where [̃S] is used to denote the set of estimated independent com-
ponents.

2.1. ICA algorithm

The first challenge of any ICA algorithm is to find an effective
way of quantitatively measuring statistical independence. Non-
Gaussianity is commonly considered as an equivalent means to
measure the independence under the Central Limit Theorem [11,9].
In brief, the Central Limit Theorem states that the distribution
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