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a b s t r a c t

Selecting relevant features in multidimensional data is important in several pattern

analysis and image processing applications. The goal of this paper is to propose a

Bayesian approach for identifying clusters of proportional data based on the selection of

relevant features. More specifically, we consider the problem of selecting relevant

features in unsupervised settings when generalized Dirichlet mixture models are

considered to model and cluster proportional data. The learning of the proposed

statistical model, to formulate the unsupervised feature selection problem, is carried

out using a powerful reversible jump Markov chain Monte Carlo (RJMCMC) technique.

Experiments involving the challenging problems of human action videos categorization,

pedestrian detection and face recognition indicate that the proposed approach is

efficient.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Larger and larger multimedia data are collected and
stored everyday presenting enormous opportunities and
challenges by increasing the need for efficient modeling,
knowledge extraction, categorization and clustering
approaches [1,2]. A fundamental task in many of these
approaches is the learning of appropriate statistical models.
Mixture models are now among the most widely used
statistical approaches in many areas of application and allow
a formal approach for unsupervised learning [3]. In such

context, classic interest is often in the determination of the
number of clusters (i.e. model selection) and estimation of
the mixture’s parameters (see, for instance, [4,5]). Another
essential issue in the case of statistical modeling in general
and finite mixtures in particular is feature selection (i.e.
identification of the relevant or discriminative features
describing the data) especially in the case of high-
dimensional data which analysis has been the topic of
extensive research in the past [6–8]. Indeed, feature selection
has been shown to be a crucial step in several image
processing, computer vision and pattern recognition applica-
tions such as object detection [9,10], handwriting separation
[11], image retrieval, categorization and recognition [12,13].
Feature selection is a major concern not only because it
speeds up learning but also because it improves model
accuracy and generalization. Moreover, the learning of the

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/sigpro

Signal Processing

0165-1684/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sigpro.2012.07.037

n Corresponding author.

E-mail addresses: t_elgue@encs.concordia.ca (T. Elguebaly),

bouguila@ciise.concordia.ca, nizar.bouguila@concordia.ca (N. Bouguila).

Signal Processing 93 (2013) 1531–1546

www.elsevier.com/locate/sigpro
www.elsevier.com/locate/sigpro
dx.doi.org/10.1016/j.sigpro.2012.07.037
dx.doi.org/10.1016/j.sigpro.2012.07.037
dx.doi.org/10.1016/j.sigpro.2012.07.037
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2012.07.037&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2012.07.037&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.sigpro.2012.07.037&domain=pdf
mailto:t_elgue@encs.concordia.ca
mailto:bouguila@ciise.concordia.ca
mailto:nizar.bouguila@concordia.ca
dx.doi.org/10.1016/j.sigpro.2012.07.037


mixture parameters (i.e. both model selection and para-
meters estimation) is greatly affected by the quality of the
features used as shown for instance in [14] which has given
renewed attention to the feature selection problem especially
in unsupervised settings. Like many other model-based
feature selection approaches (see, for instance, [15,16]) this
work has been based on the Gaussian assumption by
assuming diagonal covariance matrices [16] for all clusters
(i.e. all the features are assumed independent). Although the
normality assumption has been taken for granted in general,
several works have shown that this assumption is not sound
and not realistic in several applications [17,18] since per-
class distributions of real data often deviate from the
Gaussian distribution. This is especially true in the case of
proportional data which arise in many fields of application
and for which the generalized Dirichlet (GD) mixture has
been shown to be an efficient modeling choice as clearly
shown, for instance, in [19,5,13]. In particular, the authors in
[13] have proposed a mixture-based feature selection
approach relying on GD distribution and benefiting from its
interesting mathematical properties and flexibility.

The unsupervised feature selection model in [13] has
been trained using a minimum message length (MML) [20]
objective function with the expectation–maximization (EM)
[21] algorithm. This algorithm is, however, prone to initi-
alization errors and converges either to a local maximum or
to a saddle point solution which may compromise the
modeling capabilities. More recently, with the increase on
power of computing resources, a number of more advanced
approaches based on Bayesian inference have been pro-
posed, along with associated learning algorithms to design
them in order to overcome drawbacks related with the EM
framework [22]. Indeed, Bayesian inference is enjoying
increasing attention in the statistical learning literature and
allows to avoid over-fitting and suboptimal generalization
performance. The main idea is to consider an ensemble of
models described by a probability distribution over all
possible parameter values, rather than considering a single
model as in EM-based learning, in order to take into account
model uncertainty [23]. The implementation of Bayesian
inference-based approaches is based on MCMC approxima-
tions (e.g. Gibbs sampler, Metropolis–Hastings) which are
important tools for statistical inference in signal and image
processing applications especially in non-Gaussian settings
[24,25].

The aim of this paper is to extend the unsupervised
feature selection approach previously proposed in [13] by
reformulating it within a fully Bayesian framework. We
present a learning algorithm based on RJMCMC technique
[26] which has been widely studied and applied since its
introduction by offering an alternative to MCMC that
includes the automatic determination of the appropriate
number of mixture components and the quantification of
the uncertainty (see, for instance, [27–31]). We are mainly
motivated by the good results obtained recently using
Bayesian learning techniques in machine learning appli-
cations in general and for the unsupervised feature selec-
tion problem in particular [15]. The remainder of the
paper is structured as follows: In Section 2 we review the
feature selection model based on the generalized Dirichlet
mixture. In Section 3 we propose a Bayesian extension to

this model and we present the complete learning algo-
rithm where inference on the parameters is made by
constructing a Gibbs sampling technique. In Section 4 we
provide experimental results and we conclude with a
discussion and a summary of the work in Section 5.

2. The unsupervised feature selection model

In this section, we briefly describe the unsupervised
feature selection approach based on the finite GD mixture
model. Although this paper is self-contained, we refer the
interested reader to [13] for detailed discussions and
analysis.

2.1. The mixture model

Mixture models have recently drawn a great deal of
interest, being recognized as a powerful framework for
probabilistic inference. One of the cited advantages of finite
mixture models is that they allow for principled methods for

reasoning with incomplete data. Let fX
!

1, . . . , X
!

Ng be an

unlabeled dataset where each vector X
!

i is composed of a
set of continuous features representing a given object (e.g.
image, video, document, etc.). Here we assume that each
vector follows a mixture of generalized Dirichlet distributions

of which each generalized Dirichlet has parameters yj,

j¼1,y,M and the mixing weights, which are positive and

sum to one, of the different components are P
!
¼ ðp1, . . . ,pMÞ:

pðX
!

i9YMÞ ¼
XM
j ¼ 1

pjpðX
!

i9yjÞ ð1Þ

where M is the number of components which determines the

structure of the model, YM ¼ ð P
!

, y
!
Þ, y
!
¼ ðy1, . . . ,yMÞ and

pðX
!

i9yjÞ are the components distributions which we take as

generalized Dirichlet. In dimension D, the generalized Dirich-
let density is defined by

pðX
!

i9yjÞ ¼
YD

d ¼ 1

GðajdþbjdÞ

GðajdÞGðbjdÞ
X
ajd�1

id 1�
Xd

l ¼ 1

Xil

 !gjd

ð2Þ

where yj ¼ ð a
!

j, b
!

jÞ, a!j ¼ ðaj1, . . . ,ajDÞ and b
!

j ¼ ðbj1, . . . ,

bjDÞ;
PD

d ¼ 1 Xido1 and 0 oXido1 for d¼ 1, . . . ,D;

gjd ¼ bjd�ajdþ1�bjdþ1 for d¼ 1, . . . ,D�1 and gjD ¼ bjD�1.

The Generalized Dirichlet distribution has an interest-
ing property, previously shown in [13]. Indeed, if a vector

X
!

i has a generalized Dirichlet distribution with para-

meters ð a!j, b
!

jÞ, then we can construct a vector Y
!

i using

the following geometric transformation: Yi1 ¼ Xi1 and

Yid ¼ Xid=ð1�Xi1� � � � �Xid�1Þ for d¼ 2,3, . . . ,D such that
each Yid has a Beta distribution with parameters ajd

and bjd. This transformation means that the generalized

Dirichlet mixture model can be transformed to a
multidimensional Beta mixture model with conditionally
independent features:

pð Y
!

i9YMÞ ¼
XM
j ¼ 1

pj

YD
d ¼ 1

pbðYid9ajd,bjdÞ ð3Þ
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