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a b s t r a c t

Recent studies show that facial information contained in visual speech can be helpful

for the performance enhancement of audio-only blind source separation (BSS) algo-

rithms. Such information is exploited through the statistical characterization of the

coherence between the audio and visual speech using, e.g., a Gaussian mixture model

(GMM). In this paper, we present three contributions. With the synchronized features,

we propose an adapted expectation maximization (AEM) algorithm to model the audio–

visual coherence in the off-line training process. To improve the accuracy of this

coherence model, we use a frame selection scheme to discard nonstationary features.

Then with the coherence maximization technique, we develop a new sorting method to

solve the permutation problem in the frequency domain. We test our algorithm on

a multimodal speech database composed of different combinations of vowels and

consonants. The experimental results show that our proposed algorithm outperforms

traditional audio-only BSS, which confirms the benefit of using visual speech to assist in

separation of the audio.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Human speech perception is essentially bimodal as
speech is perceived by the interactions of auditory and visual
sensory processing [1,2]. Looking at the speaker’s lips
improves the intelligibility of human speech embedded in
cocktail party noise due to the contribution of the comple-
mentary visual information [2]. There is a complex non-
linear relationship between the auditory and visual streams,
usually referred to as the audio–visual coherence or correla-
tion [3]. In feature space, the coherence can be coded by
audio–visual atoms or dictionaries [4,5] with matching
pursuit [6] techniques, or characterized statistically with

models such as Gaussian mixture models (GMM) [7].
Exploiting these cross-modal interactions, the visual stream
has proven a success in improving the robustness to noise in
many fields of applications, including automatic speech
recognition [8], speaker localization [4,9], speech enhance-
ment or audio filtering [10,11], and blind source separation
[3,5,12–16].

In traditional blind source separation (BSS) for audi-
tory mixtures, typically only audio signals are considered.
Under the framework of independent component analysis
(ICA) [17], the BSS problems have been extensively
studied and many classical algorithms have been pro-
posed for the instantaneous mixing model such as the
‘‘J–H’’ algorithm [18], JADE [19], Infomax [20], SOBI [21]
and FastICA [22] algorithms. For the more complex con-
volutive mixing model, one can apply either the time
domain deconvolution algorithms [23–25] or the fre-
quency domain separation algorithms [12–15,26–31],
which often suffer from the permutation and scaling
ambiguity problems.
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Considering the bimodal nature of human speech, we
could potentially improve the separation of the source
signals from their audio mixtures utilizing the audio–
visual coherence obtained by the integration of visual
speech. This is known as audio–visual or bimodal BSS
[3,5,12,13,15,16], a recent development in multi-modal
signal processing. Sodoyer et al. [3] addressed the
separation problem for an instantaneous mixture of
decorrelated sources, with no further assumptions on
independence or non-Gaussianity. Wang et al. [13] imple-
mented a similar idea by applying the Bayesian
framework to the fused feature observations for both
instantaneous and convolutive mixtures. Rivet et al. [12]
proposed a new statistical tool utilizing the log-Rayleigh
distribution for modeling the audio–visual coherence, and
then used the coherence to address the permutation and
scaling ambiguities in the spectral domain. Casanovas
et al. [5] detected temporal audio–visual structures repre-
sented by atoms taken from redundant dictionaries, and
extracted sources from a soundtrack. Naqvi et al. [16]
utilized beamforming in the frequency domain for moving
sources in the teleconference-like scenario, incorporating
the geometrical model derived on the basis of the beam-
forming theory.

Despite being promising, these approaches are also
limited in some situations. For example, the algorithm
proposed in [3] was designed only for instantaneous
mixtures. The method in [13] considered a convolutive
model with a relatively small number of taps for the
mixing filters. The approach in [12] modeled the audio–
visual coherence in a high dimensional feature space,
which often results in an over-fitting problem and there-
fore is sensitive to outliers. Cross-modal correlation was
not exploited in the separation stage in [5], where visual
information was used only for voice activity detection. In
[16], the video provided the position information about
the distance and azimuth angles between the moving
speakers and the microphone array, however, source
separation was still performed in the audio domain.

In this paper, we attempt to address some of these
limitations. Motivated by the work in [12,13], we follow a
similar two-stage framework which includes off-line training
and online separation. In particular, we consider a convolu-
tive mixing model and address the permutation problem
associated with the frequency domain BSS (FD-BSS). In the
off-line training stage, we build a model to statistically
characterize the audio–visual coherence in the feature space.
This coherence is built on the audio–visual features extracted
from the target speech. Mel-frequency cepstral coefficients
(MFCCs) are used as the audio features, and the lip width and
height as visual features, which are synchronized with the
audio features on a frame-by-frame basis before statistical
training. In the separation stage, coherence maximization is
applied for the alignment of the ICA-separated spectral
components. Different from [12,13], however, we have
proposed three new techniques to improve the training and
separation processes. First, a frame selection scheme is
proposed to remove the non-stationary features which con-
sequently improves the robustness and accuracy of the
estimation of the audio–visual coherence. Second, the classi-
cal expectation maximization (EM) algorithm is modified to

take into account the different influences of the audio
features, resulting in an adapted EM (AEM) algorithm, which
further improves the estimation of the joint audio–visual
probability. Third, a novel sorting scheme is proposed to
address the permutation problem. A preliminary version
of this work was presented in [15]. Different from [15], in
this paper, we have developed a robust feature selection
scheme for audio–visual modeling as mentioned above. In
addition, we have further improved the audio feature repre-
sentation as described in Section 3.1. Moreover, here we have
performed systematic evaluations on real recordings, and
compared the performance of the proposed method with the
state-of-the-art methods.

The remainder of the paper is organized as follows.
An overview of traditional frequency domain convolu-
tive BSS and the framework of the proposed audio–
visual BSS system are presented in Section 2. Then
Section 3 introduces the feature extraction and fusion
method for the modeling of the cross-model correlation,
including a new frame selection approach and an adapted
expectation maximization algorithm to improve the
accuracy of this model. The proposed de-permuta-
tion algorithm exploiting the audio–visual coherence
is presented in Section 4. The simulation results are
analyzed and discussed in Section 5, followed by the
conclusions.

2. BSS for convolutive mixtures

2.1. Convolutive model

BSS aims to recover sources from their mixtures with-
out any or with little prior knowledge about the sources
or the mixing process. Consider a cocktail party scenario,
the observation at each sensor is the sum of K filtered
source signals, which can be approximated by the con-
volutive model

xpðnÞ ¼
XK

k ¼ 1

Xþ1
m ¼ 0

hpkðmÞskðn�mÞþxpðnÞ,

xðnÞ ¼HnsðnÞþnðnÞ, ð1Þ

where hpk represents the room impulse response filter
from source k to sensor p. We denote xðnÞ ¼ ½x1ðnÞ, . . . ,
xPðnÞ�

T as the observation vector at the discrete time index
n; sðnÞ ¼ ½s1ðnÞ, . . . ,sK ðnÞ�

T the source vector and nðnÞ ¼

½x1ðnÞ, . . . ,xPðnÞ�
T the additive noise vector, where T is

vector transpose. H is the mixing matrix whose elements
are filters hpk and n denotes convolution.

Convolutive BSS aims to find a set of separation filters
fwkpg that satisfy

ŝkðnÞ ¼ ykðnÞ ¼
XP

p ¼ 1

Xþ1
m ¼ 0

wkpðmÞxpðn�mÞ,

ŝðnÞ ¼ yðnÞ ¼WnxðnÞ, ð2Þ

where W is the separation matrix whose entry wkp is the
impulse response filter from observation p to the estimate
of source k (yðnÞ or ŝðnÞ represents the estimated version
of sðnÞ). We consider a time-invariant system where both
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