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o Our rule-based seizure prediction system provided an average sensitivity of >90%.
« Nonlinear analysis revealed patient-specific changes prior to hippocampal seizures.
« Preictal changes in iEEG data occurred in epileptogenic zones and remote areas.
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ABSTRACT

Objective: We evaluated the performance of our previously developed seizure prediction approach on

thirty eight seizures from ten patients with focal hippocampal epilepsy.

Methods: The seizure prediction system was developed based on the extraction of correlation dimension,

correlation entropy, noise level, Lempel-Ziv complexity, largest Lyapunov exponent, and nonlinear inter-

dependence from segments of intracranial EEG.

Results: Our results showed an average sensitivity of 86.7% and 92.9%, an average false prediction rate of

0.126 and 0.096/h, and an average minimum prediction time of 14.3 and 33.3 min, respectively, using sei-

zure occurrence periods of 30 and 50 min and a seizure prediction horizon of 10 s. Two-third of the ana-

lyzed seizures showed significantly increased complexity in periods prior to the seizures in comparison

with baseline.

In four patients, strong bidirectional connectivities between epileptic contacts and the surrounding areas

were observed. However, in five patients, unidirectional functional connectivities in preictal periods were

observed from remote areas to epileptogenic zones.

Conclusions: Overall, preictal periods in patients with focal hippocampal epilepsy were characterized

with patient-specific changes in univariate and bivariate nonlinear measures.

Significance: The spatio-temporal characterization of preictal periods may help to better understand the

mechanism underlying seizure generation in patients with focal hippocampal epilepsy.

© 2017 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights
reserved.

1. Introduction

Epilepsy is a neurological disorder affecting 1% of the world’s
population. It causes seizures characterized by recurrent syn-
chronous abnormal electrical discharges in the brain
(Chaovalitwongse et al., 2006; Browne and Holmes, 2008). Epilep-
tic patients are often at high risk of serious injury or death
(Cockerell et al., 1994). Moreover, accompanying psychological
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stress and helplessness can cause impaired everyday functioning
(Buck et al., 1997; Baker et al., 1997). Thereby, reliable prediction
of seizures can considerably improve the quality of life of epileptic
patients by warning them of impeding seizures to avoid potentially
dangerous situations like driving or swimming and enable admin-
istration of treatments (Cook et al., 2013; Ramgopal et al., 2014).

To date, linear and nonlinear analysis techniques have been
applied in order to identify preictal periods by investigating vari-
ous properties of the electroencephalography (EEG) signal, with
varying degrees of success (see Litt and Echauz, 2002; lasemidis,
2003; Mormann et al., 2006, 2007; Gadhoumi et al., 2016 for a
review). A number of studies have employed univariate measures
taken from the nonlinear dynamics chaos theory, including the
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Table 1
Patients and intracranial EEG data characteristics.

Patient Sex Age Seizure type Origin Electrodes # seizures Interictal EEG duration (h)
Training set Testing set Training set Testing set

1 M 38 SP,CP,GTC Temporal d 1 2 4 20

2 F 26 SP,CP,GTC Temporal dgs 1 4 4 20

3 F 31 CP,GTC Temporo/Occipital dgs 1 2 4 20

4 F 42 SP,CP,GTC Temporal d 1 2 4 20.6

5 M 47 SP,CP,GTC Temporal d 1 4 4 20.5

6 F 42 SP,CP,GTC Temporal dgs 1 3 4 21

7 F 22 SP,CP,GTC Temporo/Occipital ds 1 1 4 20

8 F 41 CP,GTC Fronto/Temporal d,s 1 3 4 20

9 M 31 SP,CP,GTC Temporal d,s 1 3 4 20

10 F 50 SP,CP,GTC Temporal ds 1 4 4 20
Total 7F/3M 10 28 40 202
Mean 3 20

SP = simple partial, CP = complex partial, GTC = generalized tonic-clonic, g: grid, s:strip, d:depth

correlation dimension (Lehnertz and Elger, 1995; Lehnertz et al.,
2001), correlation density (Martinerie et al., 1998), largest Lya-
punov exponent (lasemidis et al., 1990), dynamic similarity index
(Le Van Quyen et al., 2001), entropy (Van Drongelen et al., 2003)
and predictability (Drury et al., 2003). Nonlinear EEG analysis using
univariate measures has provided evidence that transitions
between interictal and ictal states may begin from minutes to
hours prior to seizures, with characteristic changes evolving from
a high complexity (possibly chaotic) to a low complexity (rhythmic
behavior during a seizure) (Basar, 1998).

Based on the hypothesis that interactions between different
neuronal networks involved in the epileptogenic process may also
change prior to the seizure onset, many researchers have employed
bivariate measures, such as nonlinear interdependence (Arnhold
et al., 1999), phase synchronization, and cross correlation
(Mormann et al., 2000, 2003) to predict seizures.

In our previous study, we developed a patient-specific method
with significantly improved performance to predict partial seizures
in patients with focal neocortical epilepsy using intracranial EEG
(iEEG) data by combining the univariate and bivariate nonlinear
measures (Aarabi and He, 2012). In the present study, we
employed the same seizure prediction system to iEEG data of
patients with medically intractable focal hippocampal epilepsy.
The dynamic characteristics of the iEEG were extracted and spa-
tiotemporally integrated using patient-specific rules established
based on a template seizure from each patient. We evaluated the
performance of the individual univariate and bivariate measures
as well as the combination method for seizure prediction. Finally,
the dynamic of the preictal states associated with focal hippocam-
pal seizures was compared with that we previously reported in
patients with focal neocortical epilepsy (Aarabi and He, 2012).

2. Methods
2.1. EEG data

The iEEG data analyzed in this study were obtained from the
Freiburg Seizure Prediction EEG (FSPEEG) database collected from
21 patients with medically intractable focal neocortical and hip-
pocampal epilepsy (Maiwald et al., 2004). We already used the
iEEG data of 11 patients with neocortical focal epilepsy to evaluate
the performance of our seizure prediction method (Aarabi and He,
2012). In the present paper, we evaluated the same system with
the remaining iEEG recordings of 10 patients with seizures initi-
ated in the hippocampus, which is known as a region more suscep-
tible to make abrupt transitions to seizures (Sackellares et al.,
2000). To record the iEEG data, patients had been implanted with
intracranial electrodes, from which three within the epileptogenic

zone and three in remote locations had been selected by an expe-
rienced epileptologist and included in the FSPEEG database. In
total, 280 h of iEEG data containing 38 seizures with at least
50 min preictal data and 24-h seizure-free interictal data for each
patient were analyzed in this study (Table 1).

2.2. Overall system

Fig. 1 depicts the diagram of our seizure prediction tool (Aarabi
and He, 2012). In brief, in the preprocessing stage, the iEEG data
were band-pass filtered between 0.5 and 100 Hz using a 4th order
digital Butterworth filter and notched to remove possible 50 Hz
power line noise. Then, the iEEG data were divided into 10-s
nonoverlapping segments. A set of six univariate and bivariate fea-
tures including correlation dimension (CD), correlation entropy
(CEN), noise level (NL), Lempel-Ziv complexity (LZC), largest Lya-
punov exponent (LLE), and nonlinear interdependence (NI) were
extracted from iEEG segments.

The time profiles of the features were first smoothed using a
backward-moving-average filter of 5 min. For each patient, a sim-
ple thresholding procedure was then applied to the time profiles
to determine significant changes in the values of the selected fea-
tures in comparison with a baseline, defined as a reference period
remote in time from any seizure. In this procedure for each chan-
nel, the mean (u) and standard deviation (o) of each feature were
calculated over the feature values obtained from the baseline. For
each patient, the feature values of the entire iEEG dataset were
then scanned segment by segment, and the location and the fea-
ture values of the segments exhibiting values greater than (u + o)
or less than (u — o) were saved and passed to the next stage.

To locate seizure precursors, a rule-based decision-making
stage was used to reach a single decision for any epoch (multichan-
nel iEEG segments) in two steps. First, a spatial combiner inte-
grated the information from different channels on a feature-by-
feature. In total, there were six spatial combiners acting on the uni-
variate and bivariate features. At this stage, an epoch indicated a
preliminary seizure precursor if N¢, channels (out of 6 for the uni-
variate measures and out of 15 for the bivariate measure) exhibited
significant changes in comparison with the reference period. In this
case, a primary seizure prediction flag was raised for the epoch.

In the second step, a feature integrator integrated the informa-
tion from different features for each EEG epoch. The feature integra-
tion was performed in two stages. Stage 1 included the feature
integrator I operating on the primary flags at the output of the spa-
tial combiners. At this stage, for each segment, if N primary flags
showed significant changes above a predefined threshold (T¢), a
secondary flag was raised for the epoch indicating a higher proba-
bility for the epoch to be considered as a seizure precursor.
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