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a b s t r a c t

This paper focuses on the problem of reconstructing low-rank matrices from under-
determined measurements using alternating optimization strategies. We endeavour to
combine an alternating least-squares based estimation strategy with ideas from the
alternating direction method of multipliers (ADMM) to recover low-rank matrices with
linear parameterized structures, such as Hankel matrices. The use of ADMM helps to
improve the estimate in each iteration due to its capability of incorporating information
about the direction of estimates achieved in previous iterations. We show that merging
these two alternating strategies leads to a better performance and less consumed time
than the existing alternating least squares (ALS) strategy. The improved performance is
verified via numerical simulations with varying sampling rates and real applications.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The low-rank matrix reconstruction problem arises
naturally in many fields, such as system identification [1–4],
computer vision [5,6] and quantum state tomography [7].
Suppose an r-rank matrix X has size n1 � n2, r⪡minðn1;n2Þ;
the objective is to recover X from the noisy measurements
that satisfy the equation

y¼AðXÞþe; ð1Þ
where yARm�1 is the measurement vector, A denotes a
known sensing function Rn1�n2-Rm�1, and e is assumed to
be zero-mean noise with known covariance EðeeT Þ
¼ CARm�m. Usually mon1 � n2, that is, the number of
coefficients of X is larger than the number of measure-
ments, and hence (1) is underdetermined. Specifically we

consider the case where A is a linear operator so that (1)
can be rewritten equivalently as the product of a matrix A
and the vectorization of a low-rank X

AðXÞ ¼
〈X;A1〉

⋮
〈X;Am〉

2
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3
75¼ AvecðXÞ; ð2Þ

where AARm�n1n2 consists of vectorized Ai as its ith row,
i¼ 1;…;m. This operator arises in many applications, for
instance, in quantum state tomography [7,8]; X then cor-
responds to the nearly pure density matrix of the unknown
quantum state, and A represents a series of the measure-
ment bases (e.g., tensor product of Pauli matrices).

Different techniques have been developed to solve such
underdetermined problems, such as nuclear norm mini-
mization [9,10] or alternating approaches [11–15]. Com-
pared to the nuclear norm minimization [9], an alternating
technique solution provides faster computation, higher
accuracy and is hence useful for solving large-scale
underdetermined problems based on different criteria
such as maximum likelihood (ML) [13] or least squares (LS)
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[12,16]. Typically, alternating approaches provide locally
optimal solutions. Each iteration leads to the best solution
of a set of variables given another set of fixed variables
found in the previous iteration. Here our hypothesis is
that, if the updating directions of previous iterations are
also considered in each iteration, the reconstruction will
be improved in both aspects of accuracy and efficiency
because the potential feasible set of solutions is narrowed
in each iteration. In this regard, few relevant attempts have
been made in matrix completion [11], or to update solu-
tions using a gradient descent method [17,14].

In this paper we develop two algorithms based on the
alternating technique. First we incorporate suitable mod-
ifications to the alternating least squares (ALS) algorithm of
[12] to derive a new algorithm called alternating linear
estimator (ALE) for low rank matrices with a linear struc-
ture. Then based on the ALS and ALE, we develop a novel
algorithm called alternating direction least squares (ADLS)
that endeavours to validate our hypothesis on updating
directions by fusing two alternating strategies. It utilizes the
alternating strategy with the help of an updating direction
for structured matrix reconstruction. Inspired by the ALS,
the proposed framework is based on running the LS esti-
mation to update the low rank component matrices L, R
and X iteratively, where LR¼X. In our new approach, the
new L, R are calculated by solving optimization problems
involving the augmented Lagrangian to incorporate direc-
tion update knowledge. This method is able to push vari-
ables converging to solutions more efficiently, as in the
standard alternating direction method of multipliers
(ADMM) [18,11]. The new algorithm also inherits the cap-
ability of ALS of handling structured matrices, e.g., with
Hankel structure. The simulation results are compared with
the performance of ALS and Cramér–Rao bounds (CRBs).
Besides the signal-to-reconstruction error ratio (SRER), we
also compare their processing time to show the effective-
ness and the efficiency of the proposed approach. Real
applications in system identification and inpainting are also
demonstrated.

This paper is organized as follows. We review the ALS
method in Section 2. In Section 3 we propose the ALE
algorithm for reconstructing low rank matrices with linear
operators. Then by combining ALE and ADMM, the ADLS
algorithm is proposed and analyzed in Section 4. Numer-
ical simulations are shown in Section 5 and finally Section
6 concludes the paper.

Notations: Bold letters are used to denote a vector or a
matrix. For vectors, jj � jj1, jj � jj2, jj � jj1 represent the l1, l2
and l1 norms, respectively. For matrices, AT and A† denote
the transpose and Moore–Penrose pseudoinverse of A.
Moreover, jj � jjF represents the Frobenius norm and
jjxjjW9

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xTWx

p
. χr 9fAARn1�n2 : rankðAÞ ¼ rg denotes the

set of rank r matrices. vecðAÞ represents the column vector
of concatenated columns of A, and (matn1 ;n2 ) is (vec)'s
inverse operation to convert a vector to a matrix of size
n1 � n2. � is the Kronecker product, and ▽Xff g denotes the
partial derivative of the function fwith respect to X. Finally
we use p.s.d. as the short form for positive semidefinite.

2. ALS for low-rank matrix reconstruction

The alternating least-squares approach was developed
in [12,13]. For an r-rank matrix X satisfying (1) with noise
covariance C, the weighted least-squares estimator is

X̂ ¼ arg min
XA χr

‖y�AðXÞ‖2
C� 1 : ð3Þ

To rewrite (3) in terms of the standard 2-norm, the mea-
surements and sensing operator can be prewhitened by
forming y ¼ C�1=2y and A ¼ C�1=2A. Expressing X¼ LR
where LARn1�r and RARr�n2 , the square of residuals
becomes

JðL;RÞ9‖y�AðLRÞ‖22 ¼ ‖y�A

ðIn1 � LÞvecðRÞ‖22 ¼ ‖y�AðRT � In2 ÞvecðLÞ‖22: ð4Þ
The cost function JðL;RÞ is minimized alternatingly by

R̂ ¼ arg min
R

‖y�AðIn1 � L̂ÞvecðRÞ‖22;

L̂ ¼ arg min
L

‖y�AðR̂T � In2 ÞvecðLÞ‖22: ð5Þ

The iterations of estimating R̂ and L̂ continue until the
residual ‖y�AðLRÞ‖22 no longer decreases. Specifically, we
calculate the analytical solutions vecðR̂Þ ¼ ½AðIn1 � LÞ�†y
given L and vecðL̂Þ ¼ ½AðRT � In2 Þ�†y given R. ALS is also
capable of recovering structured low-rank matrices such
as Hankel, Toeplitz, as well as p.s.d. matrices. In this case a
projection step X̂9PðLR̂Þ is added after updating R̂ using
a “lift and project” approach, whose core steps are the
truncated singular value decomposition with full expla-
nation in [19]. Then a new R is calculated by the least-
squares estimator

R ¼min
R

‖LR�X̂‖2F : ð6Þ

L can be updated likewise. ALS has been shown to be
effective for recovering low-rank matrices of large sizes.

3. Alternating linear estimator

In this section we develop a simple but efficient algo-
rithm for low rank matrices with linear structure, called
the alternating linear estimator (ALE). We assume that the
low rank matrix has linear structure, which means that
XARn1�n2 can be decomposed as

X¼ SχðhÞ ð7Þ
where hARp is a parametrization of X and Sχ :R

p-Rn1�n2

is a linear map parameterizing the linear structure of X.
Taking X as a Hankel matrix for instance, h can contain the
first column and last row of X. We denote the pseu-
doinverse of Sχ by T χ , i.e.

T χðXÞ ¼ arg min
h

‖X�SχðhÞ‖2F : ð8Þ

The idea of ALE is to iteratively update L, R and apply the
lift-and-project (or composite mapping) method to project
the matrix to its linear structure. As an initial least squares
estimate we set

h0 ¼ arg min
h

‖y�AðSχðhÞÞ‖22: ð9Þ
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