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a b s t r a c t

The paper discusses a novel sub-class of linear-in-the-parameters nonlinear filters, the
Legendre nonlinear filters. The novel sub-class combines the best characteristics of
truncated Volterra filters and of the recently introduced even mirror Fourier nonlinear
filters, in particular: (i) Legendre nonlinear filters can arbitrarily well approximate any
causal, time-invariant, finite-memory, continuous, nonlinear system; (ii) their basis
functions are polynomials, specifically, products of Legendre polynomial expansions of
the input signal samples; (iii) the basis functions are also mutually orthogonal for white
uniform input signals and thus, in adaptive applications, gradient descent algorithms with
fast convergence speed can be devised; (iv) perfect periodic sequences can be developed
for the identification of Legendre nonlinear filters. A periodic sequence is perfect for a
certain nonlinear filter if all cross-correlations between two different basis functions,
estimated over a period, are zero. Using perfect periodic sequences as input signals
permits the identification of the most relevant basis functions of an unknown nonlinear
system by means of the cross-correlation method. Experimental results involving
identification of real nonlinear systems illustrate the effectiveness and efficiency of this
approach and the potentialities of Legendre nonlinear filters.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The paper discusses a novel sub-class of finite memory
linear-in-the-parameters (LIP) nonlinear filters. LIP nonlinear
filters constitute a very broad filter class, which includes
most of the commonly used finite-memory and infinite-
memory nonlinear filters. The class is characterized by the

property that the filter output depends linearly on the filter
coefficients. It includes the well known truncated Volterra
filters [1], which are still actively studied and used in
applications [2–9], but also other popular polynomials filters,
as the Hammerstein filters [1,10–13], the memory and
generalized memory polynomial filters [14,15], and non-
polynomial filters based on functional expansions of the
input samples, as the functional link artificial neural net-
works (FLANN) [16] and the radial basis function networks
[17]. The interested reader can refer to [18] for a review
under a unified framework of finite-memory LIP nonlinear
filters. Infinite-memory LIP nonlinear filters have also been
studied [19–24] and used in applications.

Recently, the finite memory LIP class has been enriched
with two novel sub-classes: the Fourier Nonlinear (FN)
filters [25,26] and the Even Mirror Fourier Nonlinear
(EMFN) filters [26,27]. FN and EMFN filters can be origi-
nated from the truncation of a multidimensional Fourier
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series expansion of a periodic repetition or an even mirror
periodic repetition, respectively, of the nonlinear function
they approximate. FN and EMFN filters are based on
trigonometric function expansions, as the FLANN filters,
but in contrast to the latter, their basis functions form an
algebra that satisfies all the requirements of the Stone–
Weierstrass approximation theorem [28]. Consequently,
they can arbitrarily well approximate any causal, time-
invariant, finite-memory, continuous, nonlinear system.
EMFN filters provide a much more compact representation
of nonlinear systems than FN filters [26], and thus should
be the preferred choice. It has been shown that EMFN
filters can also be better models than Volterra filters in the
presence of strong nonlinearities, while Volterra filters
provide better results for weak or medium nonlinearities
[26]. An interesting property of EMFN (and FN) filters,
which is not shared by Volterra filters, derives from
orthogonality of the basis functions for white uniform
input signals in the range ½�1; þ1�. This property is
particularly appealing since it allows the derivation of
gradient descent algorithms with fast convergence speed
and of efficient identification algorithms. In [29,30], it was
shown that perfect periodic sequences (PPSs) can be
developed for the identification of EMFN filters. PPSs have
been extensively studied and proposed as inputs for linear
system identification [31] and in this context they have
found application in signal processing [32], information
theory [33], communications [34,35], and acoustics [36]. A
periodic sequence is called perfect for a modeling filter if
all cross-correlations between two of its basis functions,
estimated over a period, are zero. By applying as input
signal a PPS, it is possible to model an unknown system
exploiting the cross-correlation method, i.e., computing
the cross-correlation between the basis functions and the
system output. The most relevant basis functions, i.e.,
those that guarantee the most compact representation of
the nonlinear system according to some information
criterion, can also be easily estimated.

The novel sub-class of finite memory LIP nonlinear
filters discussed in this paper is that of Legendre nonlinear
(LN) filters, first introduced in [37]. LN filters combine the
best characteristics of truncated Volterra and EMFN filters,
as detailed in the following. First of all, the basis functions
of LN filters are polynomials, as for Volterra filters. More
specifically, they are products of Legendre polynomial
expansions of the input samples that satisfy all the
requirements of the Stone–Weierstrass approximation
theorem. Therefore, LN filters are universal approximators,
as well as Volterra, FN, and EMFN filters. With the term
“universal approximators” we mean that these filters can
arbitrarily well approximate any causal, time-invariant,
finite-memory, continuous, nonlinear system. Secondly,
the basis functions of LN filters are orthogonal for white
uniform input signals in ½�1; þ1�, which means that they
share all the benefits offered by FN and EMFN filters in
terms of convergence speed of gradient descent adaptation
algorithms and efficient identification algorithms. As a
matter of fact, it is shown in Section 5 that the 2-norm
condition number of the autocorrelation matrix of the
input data vector for the Volterra filter is always larger
than that of the EMFN and LN filters. As a consequence,

EMFN and LN filters always provide a better convergence
speed than a Volterra filter for white uniform input signals.
Finally, as it was first shown in [38], PPSs can also be
developed and used for the identification of LN filters.
Indeed, they easily allow an efficient estimation of the
most compact representation of the unknown nonlinear
system, by using the cross-correlation approach and some
information criterion. All these advantages come at the
expense of a very small increase of the implementation
complexity with respect to Volterra filters. All these
aspects are considered in detail in the paper.

It is worth noting that LN filters are based on poly-
nomial basis functions including the linear function, and
thus their modeling capabilities are similar to those of
Volterra filters. Therefore, LN filters can provide more
compact models than EMFN filters for weak or medium
nonlinearities. Moreover, identifying LN filters using PPSs
is one of the most efficient methods for the identifica-
tion of Volterra filters. Indeed, once the LN filter has been
identified, it can be easily transformed into a Volterra
filter representation exploiting the properties of Legendre
polynomials.

The approach used in this paper to introduce the LN
filter class can be applied to any family of orthogonal
polynomials defined on a finite interval. Legendre poly-
nomials are specifically considered since they have been
already used for nonlinear filtering. Indeed, they have
found application in Hammerstein models [39,40], FLANN
filters [41–43], and neural networks [44]. Nevertheless, it
should be noticed that the approaches of the literature do
not make use of cross-terms, i.e., products among basis
functions involving samples with different time delay,
which can be very important for modeling nonlinear
systems [18]. The corresponding basis functions do not
form an algebra, because they are not complete under
product. Thus, in contrast to the filters proposed in this
paper, those previously considered are not universal
approximators for causal, time-invariant, finite-memory,
continuous, nonlinear systems.

Compared with the early conference contributions
[37,38], in this paper we present an organic and detailed
introduction of LN filters and their properties, discussing
with particular attention PPSs for LN filters. Differently
from [37], LN filters are introduced in this paper starting
from a normalized set of Legendre polynomials. In contrast
to [38], full proofs of properties of the PPSs for LN filters
are here presented. Moreover, a discussion about the
advantages and disadvantages of using LN filters and PPSs
for system identification is also included in this paper.

The rest of the paper is organized as follows. Section 2
reviews basic concepts about LIP nonlinear filters, the
Stone–Weierstrass theorem, and Legendre polynomials.
Section 3 derives the LN filters and discusses their proper-
ties. Section 4 discusses PPSs for LN filters and their use for
system identification. Section 5 presents experimental
results that illustrate the advantages of LN filters and PPSs.
Concluding remarks follow in Section 6.

Throughout the paper the mathematical notation of
Table 1 is used. Moreover, sets are represented with curly
brackets, intervals with square brackets, while the following
convention for brackets ⋯f½ðÞ�g⋯ð Þ½ �� �

is used elsewhere.
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