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a b s t r a c t

This paper is concerned with establishing a new criterion for the (Q, S, R)-α-dissipativity
of fixed-point interfered state-space digital filters with saturation overflow arithmetic.
The objective of this paper is to present the H1 performance, passivity, and mixed
H1=passivity criteria in a unified framework. By tuning the weight matrices, the proposed
criterion reduces to the H1 performance, passivity, and mixed H1=passivity criteria.
Improved criteria are also proposed for reducing the conservatism of the proposed
criterion. These criteria are expressed with linear matrix inequalities (LMIs). A numerical
example shows the effectiveness of the proposed results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The digital filter is a very important building block in
many engineering areas, such as electrical and electronic
engineering. The implementation of a digital filter with
fixed-point arithmetic in digital hardware is associated with
nonlinearities, such as quantization and saturation, because
of finite word length effects and a constraint imposed on
the maximum bound of signals. These nonlinearities can
generate undesired effects, such as zero-input limit cycles,
in digital filters. Hence, the analysis and design of digital
filters under these nonlinearities are extremely important.
So far, much research has focused on the analysis of the
stability of digital filters under nonlinearities [1–11].

The hardware implementation of a large-scale digital filter
usually requires its division into several small-scale digital
filters. In this situation, interferences between these small-
scale filters always exist, resulting in poor performance or
final destruction [12,13]. Thus, analysis of the effects of
interferences in digital filters is an important research subject.
Recently, Ahn tackled this issue and established some new

stability criteria for one-dimensional and two-dimensional
digital filters in [14–18] and [18–23], respectively.

The dissipativity concept [24,25], which originated from
electrical networks, gives an important framework for synth-
esis and analysis of several control and signal processing
systems using input–output descriptions with energy-based
considerations. The input–output description leads to a
modular approach to the synthesis and analysis of signal
processing systems (for example, digital filters). One of the
important properties of dissipative systems is that the total
energy stored in the dissipative system decreases through
time. It turns out that the dissipativity concept is a very
helpful guide for the design of state estimation filters and
output feedback controllers [26]. Dissipativity is regarded as
a generalization of some well-known performance indices,
such as H1 performance, passivity, and mixed H1=passivity.
Thus, dissipativity provides a unified framework to cover H1
performance, passivity, and mixed H1=passivity [27–31]. For
this reason, many researchers have used the dissipativity
approach to create new controller and observer design
methods for several nonlinear systems [26,32–35]. Here, an
interesting question arises: Is it possible to obtain a dis-
sipativity criterion for fixed-point state-space interfered
digital filters? This paper answers this question in the
positive. To the best of the authors’ knowledge, the current
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literature contains no papers on the dissipativity of fixed-
point state-space interfered digital filters using saturation
overflow arithmetic.

This paper establishes a new (Q, S, R)-α-dissipativity
criterion for fixed-point state-space interfered digital filters
with saturation overflow arithmetic. The purpose of this paper
is to provide a unified filter stability analysis approach for
fixed-point digital filters with interferences. The proposed
criterion covers the H1 performance, passivity, and mixed
H1=passivity criteria as special cases by tuning the weight
matrices. With the introduction of slack matrices and diag-
onally dominant matrices, improved (Q, S, R)-α-dissipativity
criteria for fixed-point state-space digital filters are also
proposed to reduce the conservatism of the proposed criterion.
These criteria are described with linear matrix inequalities
(LMIs) [36,37] and thus are computationally attractive.

This paper is organized as follows. In Section 2, we
present an LMI-based criterion for the (Q, S, R)-α-dissipa-
tivity of fixed-point state-space interfered digital filters. In
Section 3, improved (Q, S, R)-α-dissipativity criteria are
proposed using slack matrices and diagonally dominant
matrices. In Section 4, we investigate some special cases of
the proposed criterion. In Section 5, a numerical example
is given, and finally, conclusions are presented in Section 6.

2. (Q, S, R)-α-dissipativity criterion for fixed-point digital
filters

Consider the following form of digital filter:

xðrþ1Þ ¼ f ðyðrÞÞþwðrÞ
¼ ½f 1ðy1ðrÞÞf 2ðy2ðrÞÞ⋯f nðynðrÞÞ�T

þ½w1ðrÞw2ðrÞ⋯wnðrÞ�T ; ð1Þ

yðrÞ ¼ AxðrÞþwðrÞ; ð2Þ
where xðrÞ ¼ ½x1ðrÞx2ðrÞ⋯xnðrÞ�T ARn is the state vector,
yðrÞ ¼ ½y1ðrÞy2ðrÞ⋯ynðrÞ�T ARn is the output vector, wðrÞ ¼
½w1ðrÞw2ðrÞ⋯wnðrÞ�T ARn is the external interference, and
AARn�n is the coefficient matrix. Here, we consider the
following saturation nonlinearities:

f iðyiðrÞÞ ¼
1 if yiðrÞ41;
yiðrÞ if �1ryiðrÞr1; i¼ 1;2;…;n;

�1 if yiðrÞo�1;

8><
>: ð3Þ

which are confined to the sector ½0;1�, i.e.,

f i 0ð Þ ¼ 0;0r f iðyiðrÞÞ
yiðrÞ

r1; i¼ 1;2;…;n: ð4Þ

In this paper, given a constant αZ0 and constant matrices
QARn�n, SARn�n, and RARn�n with Q and R symmetric, we
obtain a new criterion such that the digital filter (1) and (2)
satisfies

∑
T

r ¼ 0
yT ðrÞQyðrÞþ2 ∑

T

r ¼ 0
yT ðrÞSwðrÞþ ∑

T

r ¼ 0
wT ðrÞRwðrÞ

Zα ∑
T

r ¼ 0
wT ðrÞwðrÞ ð5Þ

under the zero initial condition, where T40. The digital filter
is said to be (Q, S, R)-α-dissipative with the performance
bound α if condition (5) is satisfied.

The following theorem gives a new (Q, S, R)-α-dissipa-
tivity criterion for state-space fixed-point digital filters.

Theorem 1. Given a constant αZ0 and constant matrices
QARn�n, SARn�n, and RARn�n with Q and R symmetric,
assume that there exist a symmetric positive definite matrix
PARn�n, a positive definite diagonal matrix MARn�n, and a
positive scalar δ such that Φo0, where

Φ¼
δATA�ATQA�P ⋆ ⋆

MA P�δI�2 M ⋆
δA�STA�QA PþM PþðδþαÞI�R�Q�S�ST

2
64

3
75
ð6Þ

and ⋆ denotes an entry that can be deduced from the
symmetry of the matrix. Then, the digital filter (1) and (2)
is (Q, S, R)-α-dissipative with the performance bound α.

Proof. Condition (4) implies

f T ðyðrÞÞf ðyðrÞÞ ¼ f T ðAxðrÞþwðrÞÞf ðAxðrÞþwðrÞÞ
r ½AxðrÞþwðrÞ�T ½AxðrÞþwðrÞ�
¼ xT ðrÞATAxðrÞþwT ðrÞAxðrÞþxT ðrÞATwðrÞ
þwT ðrÞwðrÞ; ð7Þ

from which we have

δ½xT ðrÞATAxðrÞþwT ðrÞAxðrÞþxT ðrÞATwðrÞþwT ðrÞwðrÞ
� f T ðyðrÞÞf ðyðrÞÞ�Z0: ð8Þ
Consider the following function: VðxðrÞÞ ¼ xT ðrÞPxðrÞ. Using
(8), its time difference (ΔVðxðrÞÞ9Vðxðrþ1ÞÞ�VðxðrÞÞ)
satisfies

ΔVðxðrÞÞr f T ðyðrÞÞPf ðyðrÞÞþ f T ðyðrÞÞPwðrÞþwT ðrÞPf ðyðrÞÞ
þwT ðrÞPwðrÞ�xT ðrÞPxðrÞþ2f T ðyðrÞÞM½AxðrÞ
þwðrÞ� f ðyðrÞÞ��2f T ðyðrÞÞM½yðrÞ� f ðyðrÞÞ�
þδ½xT ðrÞATAxðrÞþwT ðrÞAxðrÞþxT ðrÞATwðrÞ
þwT ðrÞwðrÞ� f T ðyðrÞÞf ðyðrÞÞ�

¼ΩT ðrÞΦΩðrÞþyT ðrÞQyðrÞþ2yT ðrÞSwðrÞ
þwT ðrÞ½R�αI�wðrÞ�2f T ðyðrÞÞM
�½yðrÞ� f ðyðrÞÞ�; ð9Þ

where

ΩðrÞ ¼
xðrÞ

f ðyðrÞÞ
wðrÞ

2
64

3
75 ð10Þ

and the term �2f T ðyðrÞÞM½yðrÞ� f ðyðrÞÞ� is not positive
considering (3). Thus, if the LMI (6) is satisfied, we have

ΔVðxðrÞÞoyT ðrÞQyðrÞþ2yT ðrÞSwðrÞþwT ðrÞ½R�αI�wðrÞ:
ð11Þ

Summation of both sides of (11) from 0 to T�1 gives

∑
T

r ¼ 0
yT ðrÞQyðrÞþ2 ∑

T

r ¼ 0
yT ðrÞSwðrÞþ ∑

T

r ¼ 0
wT ðrÞ½R�αI�wðrÞ

4 ∑
T

r ¼ 0
ΔVðxðrÞÞ ¼ VðxðTþ1ÞÞ�Vðxð0ÞÞ≧0 ð12Þ

under the zero initial condition, which guarantees (5). This
completes the proof. □
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