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a b s t r a c t

In this article, we investigate the performance of the recently proposed Direction-Of-
Arrival (DOA) estimator POWDER (Prior Orthogonally Weighted Direction EstimatoR). The
method is exploiting a specific form of prior information, namely that some DOAs are
known, as well as that the correlation state between some of the source signals is known.
In such scenarios, it is desirable to exploit the prior information already in the estimator
design such that the knowledge can benefit the estimation of the DOAs of the unknown
sources.

Through an asymptotical statistical analysis, we find closed form expressions for the
accuracy of the method. We also derive the relevant Cramér–Rao Bound, and we show the
algorithm to be efficient under mild assumptions. The realizable performance in the finite
sample-case is studied through numerical Monte-Carlo simulations, from which one can
conclude that the theoretically predicted accuracies are attained for modest sample sizes
and comparatively low SNR. This has the implication that the algorithm is significantly
more accurate than other, state-of-art, methods, in a wide range of scenarios.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Direction-of-Arrival (DOA) estimation is a classical topic
in signal processing and much work has been done in the
area in the past decades. A passive array of sensors is rece-
iving signals from a number of distinct sources, and the
objective is to estimate the directions these signal are imp-
inging from. In the seminal works [1] and [2], statistically
efficient DOA estimation methods are presented. The under-
lying assumptions for the mentioned methods to be efficient

were quite mild, notably, i.i.d. spatially white sensor noise.
Thus, the mild assumptions give estimators that are applic-
able to a wide range of scenarios.

However, many different scenarios exist in practice, and
in some of these more restrictive assumptions can be made;
for example, some of the source directions might be known
a-priori. Exploiting such information in the design of the
estimator can be expected to produce methods that are more
accurate than [1] and [2], and that this is indeed possible has
been shown numerous times, e.g. [3–5]. Another example of
a more restrictive assumption is that it might be known that
the source signals are spatially uncorrelated, e.g. [6,7], and
the combination of these two types of prior information was
in [8] shown to be beneficial.

Recently, a newDOA algorithm denoted Prior Orthogonally
Weighted Direction EstimatoR (POWDER), was proposed [9],
where it was assumed that the known and the unknown
DOAs are uncorrelated, but no assumptions were made on the
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correlation between the signals in the sets of known and
unknown signals, respectively. Thus, the method of [9] is
applicable in a wider set of scenarios than the one in [8], and
it was also shown that for scenarios where both methods
are app;licable, the former possess better small-sample
performance than the latter. Additionally, in other scenarios,
POWDER significantly outperformed state-of-the-art methods
[1,5]. One example of a scenario where a corresponding data
model is applicable is in wireless communications, where a
transmitter at a known location is transmitting a signal which
is uncorrelated to the signals emanating from the emitters at
the unknown locations. The known location could correspond
to, e.g., an interfering base station or wireless access point.

In this article we extend the work in [9] in the following
ways: we derive closed form expressions for the asymptotic
variances of POWDER; we derive the Cramér–Rao Bound
(CRB) under the particular assumptions studied; we show
that under benign conditions the POWDER-method attain the
CRB; we conclude the article by, through numerical simula-
tions, investigating the finite-sample, finite-SNR performance
of the studied method and the relation to the theoretically
derived variance. The POWDER method is theoretically inves-
tigated for arbitrary array geometries, and all the results hold
for general, unambiguous, arrays. Due to the particular app-
ealing form of the estimator implementation when a ULA is
employed, we however use such a receiver in the numerical
simulations.

The article is structured as follows. In Section 2 we revisit
the problem formulation given in [9], and in Section 3 we look
at the theoretical derivation of POWDER. We derive an exp-
ression for the CRB in Section 4, and we also show how to
simplify that expression for high SNR. In Section 5 we make a
performance analysis of the POWDER-algorithm and we see
that, asymptotically in N and for large SNR, the algorithm
obtain the CRB. We conclude the article in Section 6 by num-
erical Monte-Carlo (MC) experiments, in which we study the
performance of the investigated algorithm as well as the
applicability of the theoretically derived expression for its
accuracy.

Note that we assume, as is common in subspace-based
methods, that the number of impinging signals are known,
as well as the dimension of the subspace those signals
span. See, e.g., [10] for a treatment of the case when such
information is unavailable.

We use the following notation: Boldface lowercase
(uppercase) letters denote vectors (matrices). The operator
� denotes the Kronecker product, and the operator vecðXÞ
stacks the columns of the matrix X into a vector. It can be
verified that vecðABCÞ ¼ CT � A

� �
vecðBÞ for matrices of

matching dimensions. The superscripts T, c, and n denote
transpose, conjugate, and conjugate transpose, respec-
tively. The notation TrðXÞ denotes the trace of the matrix
X, i.e. the sum of the diagonal elements in X. By the
symbol ≜ we indicate a definition. If a quantity X ¼OðxÞ,
then X=x is bounded as x-0, and if X ¼ oðxÞ, then X=x-0
as x-0. We also use Op(x) and op(x), which are the
respective in-probability versions [11]. Note that if Xn ¼
OpðanÞ, Yn ¼ opðbnÞ, then XnYn ¼ opðanbnÞ. We denote the
Frobenius norm of the matrix X by JXJ . We define the
projection matrix ΠX≜X XnX

� ��1Xn for any full-rank
matrix X, and the orthogonal projector Π?

X ≜I�ΠX.

2. Problem description

Consider the narrow-band signal model (see e.g. [2])

yðtÞ ¼AðθÞxðtÞþnðtÞ; t ¼ 0;1;…;N�1: ð1Þ

Here, the vector yðtÞACm�1 represents the sensor array
output, and xðtÞACd�1 the signal samples, at time t. The
matrix AðθÞACm�d is the array steering matrix, which is
uniquely determined by the array geometry and the
(assumed distinct) DOAs θ of the impinging signals (we
reserve θ for the unknown DOAs, see below). The dimen-
sions m and d correspond to the number of sensors and
source signals, respectively. Finally, nðtÞACm�1 represents
the sensor noise. We model both the signal and the noise
vectors as zero mean, temporally i.i.d. circularly symmetric
complex Gaussian random processes with spatial covar-
iance matrices given by covðxðtÞÞ ¼ P and covðnðtÞÞ ¼ σ2I,
respectively. Using (1) and the definitions above, the
sensor output covariance matrix is

R¼▵ E yðtÞynðtÞ� �¼ APAnþσ2I: ð2Þ

The first key assumption in the current article, which
delimits it from some well-known state of the art results in
this field (e.g. [2]), is that we assume some of the signal
directions to be known a-priori; hence we are only inter-
ested in estimating du ¼ d�dk of the DOAs, where the
subscripts u and k henceforth denote unknown and
known, respectively. With that fact in mind we can, with-
out loss of generality, write

θ0 ¼ θT
0 ϑ

T
h iT

; ð3Þ

Aðθ0Þ ¼ Aðθ0Þ AðϑÞ
� �¼▵ Au Ak½ �; ð4Þ

P¼
Pu Puk

Pn

uk Pk

" #
ð5Þ

where henceforth θ0 and ϑ denote the unknown and the
known DOAs, respectively. We further distinguish between
θ0, representing the true values of the unknown DOAs, and
θ, which is the parametrization of the unknown DOAs. In
(4), the subscripts denote the correlation states between
the signals emanating from the unknown and known
DOAs. The second defining assumption of this work is

Puk ¼ 0; ð6Þ

hence we assume, and exploit, that there is no correlation
between the signals from the known and unknown direc-
tions. There is no other work known to the authors which
have studied this particular instance of the DOA problem;
in the DOA scenarios studied in [6] and [12], it was
assumed that the source signals were perfectly uncorre-
lated, i.e. diagonal P — that assumption is a strict subset of
the current assumption Puk ¼ 0. Accordingly, we do not
make any assumptions on Pk or Pu; except, we need to
know their respective rank and hence introduce the para-
meters d0u ¼ rankðPuÞ, d0k ¼ rankðPkÞ, and d0 ¼ rankðPÞ ¼
d0uþd0k.
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