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We consider the problem of an unknown maneuvering emitter tracking by a wireless sensor
network with time difference of arrival (TDOA) and frequency difference of arrival (FDOA)
measurements. Interacting multiple models combined with square-root cubature Kalman
filter with correlated noises (IMM-SCKF-CN) is proposed to update the parameters in the
maneuvering emitter tracking. Essential to this tracking framework is the Markov transition
probability matrix (TPM) which governs the jumps between multiple dynamic motion
models for the maneuvering target. However, in practice, the TPM is unknown and has to be
estimated. In this paper, we consider the maximum likelihood (ML) estimation of the TPM
and propose a recursive algorithm based on the improved weighted analytical center cutting
plane method (ACCPM). Compared with some batch ML methods, the resulting recursive
ML estimation method has a much lower per sample complexity. Simulation results show
the efficacy of the proposed method with greatly improved tracking performance.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

a maneuvering target, a popular approach is to model the
system as a JMS with known TPM. However, in practice,

Hybrid-state systems or jump Markov systems (JMSs)
are used in many applications of signal processing, control
theory and communications [1]. In maneuvering target
tracking, they can be defined as continuous-value as well
as discrete-value dynamic systems, whereby multiple
models representing the target motion equations switch
from one to another according to a Markov chain. Though
there are many means of achieving the state estimation of
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the TPM is always unknown and has to be precisely
estimated, otherwise, performance of the state estimation
will be dramatically degraded [2,3]. Therefore, the accurate
estimate of the TPM while allowing the multiple models
adaptively in the course of processing measurements is
necessary for JMSs. In a wireless sensor network with
synchronized sensor nodes, detection, localization, and
tracking are always performed by either TDOA or FDOA
or both [4,5]. In this paper, we focus on the TPM estimate
based on the maximum likelihood criterion using TDOA
and FDOA measurements in the JMSs.

Many kinds of tracking filters are used for maneuvering
target tracking [6-21]. One commonly used tracking filters
are linear tracking filters [6-8] including the standard Kalman
filter and lots of improved versions. Although they are
powerful tools for state estimation of the linear dynamic
system, they are not able to meet the increasing demands
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from applications as more and more complicated nonlinear
tracking problems are emerging. Extended Kalman filter
(EKF) [9,10] is one commonly used nonlinear tracking filter.
Though the performance of the filter is better than what
Kalman filter can provide, the application capability of EKF is
significantly limited because of its low accuracy, bad stability,
slow convergence and high running complexity induced by
the computation of the Jacobian matrix. Unscented Kalman
filter (UKF) [11-13] is another popular used nonlinear track-
ing filter. Though there have been many achievements by
UKE, it can easily diverge [13,14]. Furthermore, the perfor-
mance will obviously decrease when the system state
dimensionality is relatively high. Recently, particle filter (PF)
[15-17] is more and more widely used in various fields.
Though the state estimation accuracy is greatly improved
compared with EKF and UKF, PF can easily lead to tremen-
dous computational complexity [16], which restricts its
application in real-time systems. Square-root cubature Kal-
man filter (SCKF) is one of the nonlinear filters that can
achieve best trade off between accuracy and efficiency
[18-20]. It has a good ability to deal with the high dimen-
sional state. Most importantly, it uses the QR decomposition
to avoid the square-root operation of the prediction covar-
iance matrix and thus ensures the continuity of the filtering
process. Furthermore, there exists correlation between pro-
cess and measurement noise in maneuvering target tracking
[21], we use SCKF with correlated noises, SCKF-CN in short,
[19] to deal with such a difficult situation.

For maneuvering target tracking, there are usually multiple
states to transmit from one to another. Full-hypothesis-tree [1]
is the optimal algorithm in the minimum mean square sense
to estimate the states. However, this algorithm is infeasible in
practice because of its exponentially growing computational
time and memory. In order to overcome this shortcoming,
many suboptimal merging algorithms with limited complex-
ity are presented. Generalized Pseudo Bayesian of the first
order (GPB1) and Generalized Pseudo Bayesian of the second
order (GPB2) are the two usually used dynamic multiple
models estimators. The most popular used multiple models
estimator for switching models is IMM estimator whose
computational complexity is the same as that of GPB1
estimator while the performance is almost as well as that of
GPB2 estimator. This indicates that the IMM algorithm
achieves a good trade off between computational cost and
performance, thus often used in the maneuvering target
tracking.

There are some publications involving to TPM estima-
tion. In [22], the truncated ML estimator was developed,
where the unknown TPM was chosen from a finite candi-
date set. However, the computational complexity is quite
high and the choice of candidate set in some practical
applications is difficult. The recursive Kullback-Leibler (KL)
was developed in [23], where the KL divergence between
the likelihood of the observations given by the TPM and the
true likelihood was approximately minimized. An expecta-
tion—maximization-type approximation to the original ML
problem in JMLs was derived from [24]. However, this
method is very computationally expensive. Online recursive
TPM estimation using the MMSE criterion was presented in
[2], but the estimation accuracy and computational time are
not satisfied. In [25], a convex formulation for ML

estimation of TPM was established. Though the estimation
performance of the TPM is improved compared with [2],
the computation complexity is too high due to employing
PF as model matching filter. An improved design method
based on convex optimization was considered in [26].
However, the design only considered the linear system
model and only used the linear Kalman filter as mode
matching filter. In [27], analytical center cutting plane
method [30], together with IMM-EKF, was used to track
an unknown maneuvering emitter. Though the complexity
has been greatly reduced compared with the best method
numerical integral (NI) in [2], the performance of tracking is
still not satisfying.

In this paper, we consider the problem of maximum
likelihood estimation of the TPM. The main contributions of
this paper lie in the following aspects. First, since the ML
estimate of the TPM corresponds to the analytic center of a
polytope defined by the measurements, we present the
improved weighted ACCPM, which is the extension of the
algorithm in [27], to recursively update the ML TPM estimate.
In this way, the ML TPM estimation can be performed with
much higher accuracy and substantially lower complexity per
sample than some batch methods, which is very important in
practice. Second, SCKF has many outstanding properties
which make it very suitable for maneuvering target tracking.
Further, by considering measurement noise cross-correlated
process noise one time step apart [18,19,21, references therein],
we present IMM-SCKF-CN to update the parameters in the
optimization problem for the TPM estimate. Third, we provide
extensive numerical examples. Simulation results show that,
in the JMSs with joint TDOA and FDOA measurements, the
improved weighted ACCPM is an efficient recursive TPM
estimation method, which, together with IMM-SCKF-CN, can
yield a promising tracking performance.

2. System model

Consider the discrete JMS [28] with TDOA and FDOA
measurements:

X(k) =F(k—1, m(k))x(k—1)+Crc(m(k))+v(k—1,m(k)), (1)

z‘(k)} [hf x(k), sV} + @'k ]
= i=1,2,...,.M,

20= Lf(k) I [e(k), (sV(k))] +@/ (o) |
(2)

where k denotes time, x(k) = [x(k), y(k), z(k), x(k), y (k), z(k)]
denotes the base state vector corresponding to the location
and velocity of the moving emitter, s”(k) denotes the
location of the i-th sensor, C, denotes the constant control
matrix, c(m(k)) denotes the control vector, v(k), @'(k) and
@’ (k) are assumed to be Gaussian distributed, and h'(k)
and hf(k) respectively denote the noise-free TDOA and
FDOA measurement vector. m(k) is the modal state with
m(kye M £ {1,2,...,r}. Here, we denote m(k) as a Markov
chain with initial and transition probability respectively
denoted by

#;(0) = P(m;(0)), 3)
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