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a b s t r a c t

Regularization plays an important role in learning tasks, to incorporate prior knowledge
about a problem and thus improve learning performance. Well known regularization
methods, including ℓ2 and ℓ1 regularization, have shown great success in a variety of
conventional learning tasks, and new types of regularization have also been developed to
deal with modern problems, such as multi-task learning. In this paper, we introduce the
ℓ2=ℓ1 regularization for diverse learning tasks. The ℓ2=ℓ1 regularization is a mixed norm
defined over the parameters of the diverse learning tasks. It adaptively encourages the
diversity of features among diverse learning tasks, i.e., when a feature is responsible for
some tasks it is unlikely to be responsible for the rest of the tasks. We consider two
applications of the ℓ2=ℓ1 regularization framework, i.e., learning sparse self-representation
of a dataset for clustering and learning one-vs.-rest binary classifiers for multi-class
classification, both of which confirm the effectiveness of the new regularization framework
over benchmark datasets.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Regularization plays an important role in learning tasks
[1–6]. It helps incorporate prior knowledge into a learning
problem and improve learning performance. In addition, given
a finite training set sampled from an unknown distribution,
the balance between bias (approximation error) and variance
(estimation error) is of crucial importance for generalization,
while regularization provides a valuable strategy for the bias
and variance trade-off. Practically, regularization has shown
great success in various learning problems, from classification,
regression to learning data representations.

The ℓ2 regularization, also known as the Tikhonov regular-
ization, is one of the most used regularization methods that
can be found in a wide spectrum of problems, e.g, the regula-
rized least square regression and function learning in the
reproducing Hilbert space [1]. However, the ℓ2 regularization

generally leads to nonsparse representations, while a sparse
model is better interpretable and helps identify the most
important factors in a problem. In contrast, the ℓ1 regulariza-
tion has received the greatest attentions in current studies for
its capability to encourage sparsity. Popular sparse models with
the ℓ1 regularization include the Lasso [2], sparse coding [4],
and covariance selection [5]. New types of regularization have
recently been introduced to fulfil modern learning problems.
For example, in multi-task learning, it is assumed that the
multiple regression functions share a common sparse structure
over input features, and the ℓ1=ℓ2 and ℓ1=ℓ1 regularization
are used to select these common features [7,8]. Both of these
regularization functions use the ℓ1 norm to encourage “block-
sparsity” of the regression coefficients matrix, and thus a
feature is jointly relevant to no regressions or mostly all ones.

In this paper, we consider a new regularization framework
for learning a diverse set of tasks. In contrast to multi-task
learning, where it is assumed that the tasks share a common
set of features, we assume that the features are sparsely
distributed among different tasks, that is when a feature is
responsible for some tasks it is unlikely to be responsible for
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the rest of the tasks. Since the ℓ1=ℓ2 and ℓ1=ℓ1 regularization
used in multitask learning have opposite intuitions to learning
diverse tasks, they are therefore inapplicable. To address such a
new learning problem, we introduce the ℓ2=ℓ1 regularization
framework. The ℓ2=ℓ1 regularization is a mixed norm defined
over the parameters of the diverse learning tasks and adap-
tively encourages the sparse distribution of features. Further,
we present a fast first-order algorithm for ℓ2=ℓ1 regularized
empirical risk minimization. In our algorithm, the generalized
gradient update in each iteration is reformed as a nonnegative
least square (NLS), and further a greedy method with negli-
gible computations is used to solve the NLS. We apply the
proposed ℓ2=ℓ1 regularization framework to learning sparse
self-representation of a dataset for clustering and to multi-
class classification.

2. The framework of ℓ2=ℓ1 regularized multilabel
learning

For convenience of presentation, we first clarify some
notations to be used in the derivation. Bold lowercase letter
a denotes a vector, while bold uppercase letter A denotes a
matrix .J � J denotes the ℓ2 norm for a vector while the
Frobenius norm for a matrix. 〈A;B〉¼ traceðATBÞ. sgnð�Þ and
absð�Þ are sign and absolute value operations on vectors,
respectively. � denotes element-wise product between vec-
tors. By A¼ ½a1; a2;…; ap�, we mean that aj is the j-th column
of A, while by A¼ ½aT1; aT2 ;…; aTp �T , we mean that aj is the j-th
row of A . e denotes a vector of proper size with all elements
being 1, and E¼ eeT . ∇f ðxÞ denotes the gradient of function
f(x) at point x.

2.1. Regularized empirical risk minimization

Suppose we have m learning tasks, having training dataset
D¼ fD1;…;Dmg and being parameterized by BARm�p,
where p is the dimension of training examples. With a
properly chosen loss function L, the optimal parameter B
can be jointly learned by the following regularized empirical
risk minimization:

Bopt ¼ arg min
B

LðB;DÞþϱRðBÞ

¼ arg min
B

∑
m

i ¼ 1
LðBði; : Þ;DiÞþϱRðBÞ ð1Þ

where RðBÞ is the regularization term and ϱ is the tuning
parameter.

Generally, RðBÞ encodes the prior knowledge we assumed
on them learning tasks. For instance, if we assume sparsity on
the feature distribution for each learning task, the ℓ1 regular-
ization JBJ1 ¼∑m

k ¼ 1∑
p
j ¼ 1jBðk; jÞj can be applied. In this

paper, for learning diverse tasks, we introduce the following
ℓ2=ℓ1 regularization:

RðBÞ ¼ JBJ22;1 ¼ ∑
p

j ¼ 1
∑
m

k ¼ 1
jBðk; jÞj

 !2

: ð2Þ

First, the internal ℓ1 norm encourages the Bð: ; jÞ to be sparse
over tasks, while the external ℓ2 norm is used to control the
complexity of entire model. But, more importantly, as we

expand the regularization as below

JBJ22;1 ¼ ∑
p

j ¼ 1
∑
m

k ¼ 1
jBðk; jÞj2þ ∑

p

j ¼ 1
∑
m

k ¼ 1
wðk; jÞjBðk; jÞj ð3Þ

with

wðk; jÞ ¼ ∑
iak

jBði; jÞj; ð4Þ

one can see that for each feature j, it is penalized with more
weightwðk; jÞ on task k, if it contributes more to the rest of the
tasks. This adaptively makes a diverse and sparse distribution
of features among tasks. In contrast, though the ℓ1 regulariza-
tion also encourages sparsity, the penalties on each feature
over different tasks are independent.

Combining (1) and (2), the ℓ2=ℓ1 regularized empirical
risk minimization framework is given by

Bopt ¼ arg min
B

LðB;DÞþϱJBJ22;1; ð5Þ

where ϱ40 is the tuning parameter.

2.2. First-order algorithm

Now, we derive a first-order algorithm for solving the
ℓ2=ℓ1 regularized empirical risk minimization framework
(5). For simplification, we use LðBÞ to denote LðB;DÞ, and
assume that it is convex and has Lipschitz continuous
gradient, which can be satisfied by choosing a proper loss
function. However, as the JBJ22;1 term is nonsmooth
(though convex), the minimization in (5) is generally
nontrivial. In addition, as the ℓ1=ℓ2 regularization devel-
oped for multi-task learning in the literature has a differ-
ent formulation, i.e., first calculating the ℓ2 norm of each
row and then the ℓ1 norm, which is in contrast to the
ℓ2=ℓ1 regularization (2), the corresponding algorithm is
not applicable here.

The first-order method has received considerable atten-
tions in solving machine learning problems, because of its
attractive efficiency and scalability. In this paper, we also
exploit the same strategy to solve our problem (5). Specifically,
in each first-order iteration, we solve the following problem:

Bn ¼ arg min
Z

〈∇Ln Bð Þ;Z�B〉þ 1
2t

JZ�BJ2þϱJZJ22;1: ð6Þ

where t40 is set such that 1=t is larger than the Lipschitz
constant of Ln's gradient. This can be regarded as an applica-
tion of the forward–backward splitting algorithm or the
majorization–minimizationmethod and thus with guaranteed
convergence [9–11].

Denoting Bn ¼ ½bn

1;b
n

2;…;bn

p� and ∇LðBÞ ¼ ½h1;h2;…;hp�,
(6) requires p separated subproblems:

bn

j ¼ arg min
z

〈hj; z�bj〉þ
1
2t

Jz�bj J2þϱJzJ21

¼ arg min
z

1
2
JzJ2�〈bj�thj; z〉þtϱJzJ21; ð7Þ

with 1r jrp. Similar problems to (7), with more general
settings, have actually been studied in the literature of sparse
signal recovery. In particular, a coordinatewise soft-
thresholding algorithm given in [12] solves (7) in finite itera-
tions. Here, we propose an alternative strategy to solve (7). We
first convert (7) to a nonnegative least squares (NLS) problem
and then solve the NLS by an efficient greedy algorithm.
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