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a b s t r a c t

This paper introduces a novel fractional diffusion-wave equation with non-local regular-
ization for noise removal. Using the fractional time derivative, the model interpolates
between the heat diffusion equation and the wave equation, which leads to a mixed
behavior of diffusion and wave propagation and thus it can preserve edges in a highly
oscillatory region. On the other hand, the usual diffusion is used to reduce the noise
whereas the non-local term which exhibits an anti-diffusion effect is used to enhance the
image structure. We prove that the proposed model is well-posed, and the stable and
convergent numerical scheme is also given in this paper. The experimental results indicate
superiority of the proposed model over the baseline diffusion models.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Partial differential equations (PDEs) based methods for
image processing (denoising, restorations, inpainting, seg-
mentation, etc.) have been largely studied in the literature
(see [1] and references therein) due to their remarkable
advantages in both theory and computation. They allow to
directly handle and process visually important geometric
features. In addition, they can also effectively simulate
several visually meaningful dynamic processes such as
linear and nonlinear diffusion, and the information trans-
port mechanism.

In order to preserve the image structures when remov-
ing the noise, Perona and Malik [2] proposed a nonlinear
equation which replaced isotropic diffusion expressed
through a linear heat equation with an anisotropic diffu-
sion. While the backward diffusion of the PM equation
results in enhancing the edges, it is an ill-posed process in
the sense that it is very sensitive to perturbations in the

initial noisy data. Since the work of Perona and Malik, a
large number of nonlinear PDEs based anisotropic diffu-
sion models have been proposed [3–5]. In addition, the
well-known total variation (TV) model [6] is closely
related to the diffusion models and the relations have
been studied in the literature [7]. Although these second-
order PDEs can achieve a good tradeoff between noise
removal and edge preservation, they tend to cause the
denoised image to exhibit “staircase effect”. In order to
overcome this drawback, the high-order PDEs (typically
fourth-order PDEs) were adopted in [8–10], but they often
lead to the speckle effect.

Recently, fractional-order PDEs have been studied and
applied to the image processing and computer vision. Cuesta
et al. [11,12] proposed a fractional-order linear integro-
differential equation for image denoising as follows:

∂αt uðt; xÞ ¼Δuðt; xÞ; ðt; xÞA ½0; T � �Ω; ð1Þ
where Δ denotes Laplacian operator, Ω�R2 represents the
image domain, and ∂αt stands for the Riemann–Liouville (R–L)
fractional time derivative of order α, 1oαo2. Since the
model (1) interpolates a diffusion equation (for α¼ 1) and a
wave equation (for α¼ 2), the solution of (1) will satisfy
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intermediate properties, i.e., the maximal diffusion is reached
for α¼ 1 and there is no diffusion at all for α¼ 2. Cao et al.
[13] proposed a similar model which replaces the fractional-
order derivative by introducing a weight parameter between
the first and second order time derivatives. On the other hand,
Bai and Feng [14] proposed an anisotropic model with
fractional space derivatives, i.e.,

∂tuðt; xÞ ¼ �ðDα
x1 Þ

nðcðJDα
xuðt; xÞJ2ÞDα

x1 Þ
�ðDα

x2 Þ
nðcðJDα

xuðt; xÞJ2ÞDα
x2 Þ;

tA ½0; T �; x¼ ðx1; x2ÞAΩ; αA ½1;2�; ð2Þ

where Dα
x1 and Dα

x2 denote the fractional spatial derivative of
the order α, and ðDα

� Þn represents the adjoint operator of the
linear operator Dα

� . It is observed that themodel (2) leads to an
interpolation between the PM model (for α¼ 1) and the
fourth-order anisotropic diffusion equation [9] (for α¼ 2).
Thus, it contains the advantages of both methods. In addition,
Zhang et al. [15,16] generalized the TV model for image
denoising using the Grünwald–Letnikov fractional-order deri-
vative. And Ren et al. [17] proposed the fractional-order TV
regularization for image super-resolution. Recently, inspired
by the models (1) and (2), Janev et al. [18] proposed a fully
fractional anisotropic diffusion (FFAD) equation for noise
removal, which contains spatial as well as time fractional
derivatives, i.e., ∂tuðt; xÞ in (2) is replaced by cDβ

t uðt; xÞ which
is the left Caputo time fractional derivative of order βA ½1;2Þ.
Thus, it can interpolate between the parabolic and the
hyperbolic PDE and, at the same time, between the second
and fourth order PDE. Although this model can manage to
preserve edges and highly oscillatory regions, the anisotropic
diffusion is based on the PMmodel which is actually ill-posed.

Another drawback of the classical PDEs-based methods
is that the derivative is a local operator. Recently, the non-
local technique have been used very successfully for many
image processing tasks [19–22]. These methods exploit the
image self-similarities or redundancies to reconstruct the
image. However, the process of searching for the similar
patches is very time-consuming. In this paper, we attempt
to extend the Cuesta's model (1) by introducing a non-
local regular term. Note that unlike the non-local methods
mentioned above, here the non-local operator is defined
by Fourier transform, which dose not require the search
process. This non-local operator was first proposed in the
field of physics, such as overdriven detonations in gases
[23], anomalous diffusion in semiconductor growth [24],
the morphodynamics of dunes and drumlins [25,26], etc.
Recently, Azerad et al. [27] exploit the anti-diffusion effect of
this non-local operator to achieve simultaneous denoising
and enhancement of one-dimensional signals. In this paper,
we propose a fractional diffusion-wave diffusion with non-
local regularization. The usual diffusion smooths the image
and removes the noise, while the partial wave-like behavior
of the equation and the anti-diffusion of the non-local term
guarantee that the edges are preserved. Moreover, the
proposed model is actually a linear well-posed equation.

The remainder of this paper is organized as follows:
Section 2 introduces the fractional-order derivatives and
integrals. Section 3 presents the details of our denoising
model. In addition, the well-posedness of the proposed
model has been proved in Section 4, and the stable and

convergent numerical scheme is given in Section 5. In
Section 6, we show experimental validation of our model
and compare it, visually and quantitatively, to the baseline
diffusion methods. Finally, Section 7 concludes this paper.

2. Fractional calculus

Let us recall the Cauchy's well-known representation of
an n-fold integral as a convolution integral

Jnf xð Þ ¼ 1
ðn�1Þ!

Z x

0

1
ðx�tÞ1�n f tð Þ dt; nAN; xARþ ; ð3Þ

where Jn is the n-fold integral operator with J0f ðxÞ ¼ f ðxÞ.
Replacing n in (3) with αARþ , one obtains a definition of a
non-integer order integral [28,29], i.e.,

Jαf xð Þ ¼ 1
ΓðαÞ

Z x

0

1
ðx�tÞ1�α

f tð Þ dt; xARþ ; ð4Þ

where ΓðαÞ is the Euler's continuous gamma function,
which satisfies ΓðαÞ ¼ ðα�1Þ! if α is an integer. The non-
integer order derivatives can simplest be defined as con-
catenation of integer order differentiation and fractional
integration, i.e.,

Dαf ðxÞ ¼DnJn�αf ðxÞ or cDα f ðxÞ ¼ Jn�αDnf ðxÞ; ð5Þ
where n is the integer satisfying αrnoαþ1 and Dn, nAN,
is the n-fold differential operator with D0f ðxÞ ¼ f ðxÞ. The
operator Dα is called the Riemann–Liouville (R–L) differ-
ential operator of order α, while the operator cDα is named
Caputo differential operator of the order α [28,29].

3. Proposed model

As mentioned above, the model (1) [11,12] is a well-
posed equation which interpolates a diffusion equation
and a wave equation, but it is based on the heat equation
which performs an isotropic diffusion. Although the model
(2) [14] interpolates between the second and fourth order
anisotropic diffusion equation and the Janev's model [18]
can also interpolate between the parabolic and the hyper-
bolic PDE at the same time, they are based on the PM
equation which is actually ill-posed. To overcome their
drawbacks, we propose a fractional diffusion-wave equa-
tion with the non-local regular term

cDα
t uðt; xÞ ¼Δuðt; xÞþλgβ½uðt; �Þ�ðxÞ; ðt; xÞA ½0; T � �Ω;

uð0; xÞ ¼ u0ðxÞ; xAΩ;

∂tuð0; xÞ ¼ 0; xAΩ;
∂u
∂ n!

t; xð Þ ¼ 0; ðt; xÞAð0; TÞ � ∂Ω;

8>>>>>><
>>>>>>:

ð6Þ
where u0AL2ðΩÞ represents the noisy image, n! denotes
the exterior normal to the boundary ∂Ω, λ is a positive
parameter, and cDα

t denotes the partial Caputo differential
operator of order αA ½1;2Þ with respect to time t. We use
Caputo differential operator because of its advantage with
regards to the initial conditions, i.e., the fact that the initial
and boundary conditions retain the form given in (6).

In (6), gβ½φ� is the non-local operator, also called Lévy
operator, defined by the symbol jξjβ , 1oβo2. More
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