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a b s t r a c t

In this paper, we investigate the shrinkage problem of image denoising for various
methods under the additive white Gaussian noise (AWGN) model. Our main contribution
is to derive the closed-form of the optimal shrinkage that minimizes the Stein0s unbiased
risk estimator (SURE) and thus allows direct blockwise shrinkage without additional
optimizations. Simulation results show that the proposed method boosts the denoising
performance for a variety of image denoising techniques including the moving average
filter, the median filter, the wiener filter, the bilateral filter, the probabilistic non-local
means, and the block matching 3D filter in terms of higher pixel signal noise ratio (PSNR)
and structural similarity index (SSIM). We also case study the proposed shrinkage solution
with respect to the classic NLM denoising, whose shrinkage solutions and equivalent
forms have been widely researched, and further confirm its superiority. The proposed
shrinkage solution can be used to improve arbitrary image denoising methods under the
AWGN model, and it serves as a good remedy to save badly denoised images due to
inappropriate parameters.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Because of possible noise introduced in image acquisi-
tion, transmission, storage and other stages, a digital
image is often corrupted by a certain level of noise [1–3].
Though a low level of noise does not cause a visual
difference for human beings, a high level of noise often
leads to a noticeable loss of image quality. Image denoising
is a process aiming to restore an original clean image from
its noisy counterpart. A well denoised image not only looks
visually appealing, but also paves a way to many advanced
analysis tasks in image processing and computer vision, e.
g. object recognition and character recognition [4,5].

Assume a two-dimensional H �W clean image x¼ fxlg
with l¼ ðlr ; lcÞ and lrA ½1;H�; lcA ½1;W � is contaminated

by noise n¼ fnlg through a noise model f ð�Þ. Then its
noisy counterpart which we observe can be denoted as
y¼ f ðx;nÞ. The image denoising process gð�Þ then seeks an
estimation of the clean image only from the observed
noisy image i.e. bx ¼ gðyÞ. Depending on the physical causes
of image noise, a noise model f ð�Þ can be of different forms.
For example, the widely used additive white Gaussian
noise (AWGN) model can be depicted as follows:

f : y¼ xþn and 8 l; nl �N ð0; s2Þ ð1Þ
where each observed image pixel yl is the superposition of
a clean image pixel xl and a noisy pixel nl following i.i.d.
zero-mean Gaussian noise with an unknown variance s2.
Other commonly used noise model includes the salt-and-
pepper noise [6], shot noise (Poisson distribution) [7],
quantization noise (uniform distribution) [8], etc.

Image denoising methods are often classified into two
groups [9]: (1) spatial domain (SD) image denoising and
(2) transform domain (TD) image denoising. SD image
denoising is a category of methods that often denoise an
image by exploring and using spatial correlations across an
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image. It includes the conventional moving average filter
(MAF) [10], the classic Gaussian filter (GF) [10], the well-
known bilateral filter (BF) [11], the popular non-local
means (NLM) [12,13], and many others [14–18]. One
common feature of many SD methods is that each of them
can be considered as a special case within the kernel
estimation framework

bxl ¼ ∑kASl
Kðl; k; yl; ykÞyk

∑kASl
Kðl; k; yl; ykÞ

ð2Þ

where Kð�Þ denotes a kernel function and Sl is a specified
searching window centered at the lth pixel, e.g. Sl ¼
fkjjkr� lr jr1 and jkc� lcjr1g denotes a 3�3 window.
It is the kernel Kð�Þ that differentiates the various SD
methods. To see this, the kernel functions with respect to
the GS, BF, NLM and the probabilistic NLM (PNLM) [17] are

KGF l; k; yl; yk
� �¼ exp � J l�kJ2yk

h

 !
ð3Þ

KBF l; k; yl; yk
� �¼ exp � J l�kJ2

hs
� ðyl�ykÞ2

hi

 !
ð4Þ

KNLM l; k; yl; yk
� �¼ exp � JyPl

�yPk
J2

hs

 !
ð5Þ

KPNLM l; k; yl; yk
� �¼ χ2ηðl;kÞ

JyPl
�yPk

J2

γðl; kÞ

 !
ð6Þ

where J � J denotes the L2 norm, Pl is a prescribed local
patch centered at the lth pixel, and h; hs; hi; hs; ηð�Þ, γð�Þ
are all parameters or parametric functions specified in the
methods. Many contributions have been made for the SD
denoising in recent years. These mainly focus on four
things: (1) finding better kernel functions [14,16,17,19–22],
(2) robust parameter tuning [23,24], (3) iterative denoising
[25–27] and (4) computational speed-up [15,28,29]. It is
worthy to point out that the design idea of NLM is often
adopted and extended in more advanced image denoising
techniques [30], like K-clustering with singular value
decomposition (K-SVD) [31], and more sophisticated single
image super-resolution tasks like [32].

In contrast to SD methods, TD methods first transform
an image from the spatial domain to an alternative
domain, apply denoising in this domain and then trans-
form the resulting image back to spatial domain to
complete denoising. In this way, the original image
denoising problem may be better represented in the
transformed domain preserving image features. Depend-
ing on the basis functions of a selected domain, one
may further group TD methods into (1) methods with
orthogonal-basis and (2) methods with nonorthogonal-
basis [9]. The former group uses orthogonal basis func-
tions, like Fourier [33], wavelet [34,35], curvelet [36],
ridgelet [37], etc. As a result, image noise corresponds to
high frequency components with small coefficients in a
transformed image, and can be differentiated from image
edges that correspond to high frequency components with
large coefficients and from image homogeneous regions
that correspond to low frequency components. The latter
group of non-orthogonal basis domain has attracted much

attention recently, mainly because non-orthogonal basis
functions are more adaptive to local image features than
fixed orthogonal basis functions [9]. A recent trend of TD
methods is to use redundant representations for each
image patch (equivalent to decompose each image patch
as a linear combination of several non-orthogonal basis
functions), e.g. K-SVD [31] and the learned simultaneous
sparse coding (LSSC) method [38].

It is worthy noting that both SD and TD image denois-
ing have their own weaknesses [9]. For example, SD
methods often tend to oversmooth edge pixels after
denoising [9], while TD methods often turn i.i.d. noise in
a spatial domain to dependent noise in a transform
domain and make analysis more difficult. It is therefore
not surprising to see that many recent methods use both
SD and TD for image denoising. For example, the block
matching 3D transform (BM3D) [33] method stacks similar
image patches in spatial domain but applying wavelet
shrinkage for denoising, and it achieves remarkable per-
formance in both denoising quality and speed. The NLM
with dimensionality reduction method [39] denoises an
image by using a kernel function in a transformed PCA
domain. For a more detailed literature review on image
denoising, one may refer to [9,12].

Besides these contributions on specific image denoising
methods, many efforts are also made to solve general
image denoising problems. For example, the Monte-Carlo
SURE blackbox [1] provides an effective solution to para-
meter selections for image denoising methods. NLM with
shape-adaptive patches (NLM-SAPs) develops a method
to linearly combine multiple denoising results of using
different parameters into one single and better output
[19]. In this paper, we are interested in the general
shrinkage estimation problem for image denoising: how
to construct a better denoised image by using a noisy
image observation and its corresponding denoised image.
The rest of the paper is organized as follows: Section 2
briefly reviews the SURE and the shrinkage problem;
Section 3 derives the closed-form of optimal blockwise
shrinkage, proposes the SURE-based pixel aggregations
and implementation; Section 4 discusses our simulation
results; and we conclude the paper in Section 5.

2. Background

2.1. The shrinkage estimation in spatial domain image
denoising

The shrinkage problem seeks a better estimator by
linearly combining an initial estimate and the raw data.
In image denoising, this means a new estimate that is
found asbx 0 ¼ ð1�qÞJbxþqJy ð7Þ
where ○ denotes the elementwise product, q¼ fqlg is the
shrinkage coefficient matrix of the same size as the noisy
image, and 1, bx , and y denote the all-one matrix, the
initially denoised image, and the noisy image, respectively.

Though the shrinkage problem is often considered as a
separated problem in the SD denoising, shrinkage is
actually implicitly and deeply involved in the design of
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