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a b s t r a c t

There is an ongoing need to develop image denoising approaches that suppress noise
while maintaining edge information. The non-local means (NLM) algorithm, a widely used
patch-based method, is a highly effective edge-preserving technique but is sensitive to
parameter tuning. We use a variational approach to combine multiple NLM estimates,
seeking a solution that balances positivity constraints and gradient penalties against
Stein0s Unbiased Risk Estimate (SURE). This method greatly reduces parameter sensitivity
and improves denoising performance vs. other NLM variants.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Non-local means denoising (NLM) [1,2] has attracted
significant interest in recent years, largely due to its
success in preserving edges in denoised images. NLM
operates by averaging data from different regions in the
image that have similar appearance, relying on the fact
that natural images often contain repeated patterns. Multi-
ple extensions of the algorithm have been proposed,
focusing on computationally efficient implementation
[3–5], robust parameter selection [6–8], alternative noise
models [9–11], and many others. NLM and other methods
exploiting patch concepts, in particular BM3D [12], give
state-of-the-art denoising results.

Our work builds on previous work by De Ville and
Kocher [7], in which a linear combination of multiple NLM
estimates is found that minimizes Stein0s Unbiased Risk

Estimate (SURE) globally across the image. The authors
demonstrated that this combination can improve perfor-
mance and reduce the need for parameter tuning. The
authors also noted that in some cases, particularly for low-
texture images, their approach suffered from over-fitting.
Here we address this problem by proposing a constrained
optimization framework for finding a convex combination
of multiple NLM estimates, in which we add Total Varia-
tion (TV) gradient penalties [13] as well as positivity
constraints.

Insight can be gained by considering denoising as a
diffusion process, in which the image values are evolved
according to a partial differential equation. Applying iso-
tropic diffusion (the heat equation) corresponds to con-
volving the image with a Gaussian, which suppresses noise
but also blurs edges [14]. As a result, many approaches
have been developed that preserve edges during denois-
ing, such as anisotropic diffusion approaches [15,14], non-
linear diffusion approaches such as the ROF filter [13,16],
and nonlocal methods such as the Yaroslavsky filter [17]
and bilateral filters [18]. Patch-based approaches such as
NLM or UNITA [19] are a further development of these
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methods. NLM has been shown to be equivalent to diffu-
sion based on pixel values, rather than spatial location
[20]. In general, these filters take the form (for a contin-
uous image I(y)) of

u xð Þ ¼
R
Kðx; yÞIðyÞ dyR
Kðx; yÞ dy ð1Þ

(see [21] for further discussion). In Section 2, we show that
a linear expansion of NLM estimates gives a result which is
similar in form to Eq. (1). We further demonstrate that the
constrained linear expansion we propose here leads to a
kernel with desirable properties (guaranteeing, for exam-
ple, that a non-negative image remains non-negative after
denoising).

The contributions of our work are as follows. First, we
formulate in Section 2 an optimization problem that
includes Total Variation terms and positivity constraints
in order to find the optimal weight combination for
multiple NLMs. The properties of the resulting filter are
then discussed. Second, we develop an alternating direc-
tion method of multipliers (ADMM) approach to efficiently
solve this problem. While a similar solution method was
recently used to deblur cartoon-plus-texture images [22],
we are not aware of previous work on applying ADMM to
multi-patch denoising problems. Finally, we demonstrate
in Section 3 that this approach gives improved denoising
as compared to [7] and other NLM variants, and conclude
in Section 4.

2. Methods

Denoising addresses the problem of recovering the true
image values u given noisy observation v¼ uþn, where n
is additive noise. Consider a given pixel location j that is
associated with a patch Δ. The NLM estimate ûNLMðjÞ is a
weighted sum of values at other points k that are within
some search neighborhood NsrchðjÞ:

ûNLM jð Þ ¼ 1
ZðjÞ ∑

kANsrchðjÞ
KNLM j; k λj Þv kð Þð ð2Þ

where ZðjÞ ¼∑kKNLMðj; kjλÞ, and the weights are given
by [6]

KNLMðj; k λj Þ ¼ exp � ∑δAΔðvðjþδÞ�vðkþδÞÞ2
2LΔλ2

 !
ð3Þ

(note [1] defined the denominator above as h2). In Eq. (3),
λ is a bandwidth parameter, while Δ represents a local
patch of pixels surrounding j, containing LΔ pixels; a patch
of the same shape also surrounds k. Although a variety of
patch shapes are possible [1,23], square patches centered
on the points of interest are most common. The summa-
tion in (3) captures patch similarity from the summed,
squared pixel-by-pixel difference between patches cen-
tered on j and k (here δ is the offset from the patch center).
If similar patches can be found throughout the image, then
ideally the neighborhood Nsrch is taken to be the entire
image, so the averaging process is fully non-local. More
detail on NLM is found in [1,2].

Next, assume that we generate P different estimates
of the denoised image ûpðjÞ, calculated as discussed in

Eqs. (2) and (3) but corresponding to different choices of
denoising parameters. Like [7], we seek a linear combina-
tion of these estimates. Unlike [7], we seek to minimize a
weighted sum of Stein0s Unbiased Risk Estimate (SURE)
and gradient penalties, subject to positivity constraints.
The linear expansion of NLM estimates is given by

ûðjÞ ¼ ∑
P

p ¼ 1
wpûpðjÞ: ð4Þ

The anisotropic Total Variation is given by

TV û
� �¼∑

l

∂
∂x

û lð Þ
����

����þ ∂
∂y

û lð Þ
����

���� ð5Þ

while the SURE term is given by [6]

JSURE ¼
1
2L

∑
l
ðûðlÞ�vðlÞÞ2�s2þ 2s2

L
∑
l

∂ûðlÞ
∂vðlÞ

� 1
2L

∑
l
ðûðlÞ�vðlÞÞ2�s2þ 1

L
divyfûg ð6Þ

where L is the number of points in the image. The
expansion in Eq. (4) is substituted into Eqs. (5) and (6).
To simplify notation, we collect the P denoised image
estimates into an L� P matrix U. Similarly, we can collect
the x and y gradients of the P images into L� P matrices Dx

and Dy, and can collect the P divergence fields into a
matrix DIV (which includes the scaling 2s2). We are using
the fact that because the new û is a linear expansion of the
component ûps, the new gradient and divergence are also
linear expansions of the component gradients and diver-
gences. This gives the following expression to be mini-
mized:

J wð Þ ¼ 1
2 JUw�vJ22þDIVwþλTV JDwJ1 ð7Þ

Here we have dropped the constant term s2, absorbed
factors of 1/L into λTV , and defined D¼ ½DT

xD
T
y �T (note that D

is not simply the difference operator, but rather the
difference operator applied to each of the denoising
estimates). In addition, we impose the constraints

∑
p
wp ¼ 1; w≻0 ð8Þ

2.1. Comments

We can gain a better understanding of the proposed
filter by inserting Eq. (2) into Eq. (4) and noting that our
final denoised estimate can be written as

û jð Þ ¼ ∑
kANsrchðjÞ

∑
P

p ¼ 1

wp

ZpðjÞ
KNLM j; kjλp

� �" #
v kð Þ ð9Þ

ûðjÞ � ∑
kANsrchðjÞ

Kði; jÞvðkÞ ð10Þ

where Kði; jÞ is a new denoising kernel, formed as the
weighted sum of the individual NLM kernels. This result
holds for both the unconstrained linear expansion method
of [7] and for our proposed method. Thus linear expansion
creates a new kernel, which has the flexibility to take on
shapes not possible within the family of possible NLM
kernels defined by Eq. (3). This added flexibility helps to
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