Contents lists available at ScienceDirect

Experimental Neurology

journal homepage: www.elsevier.com/locate/yexnr

Review Article Developmental plasticity in the neural control of breathing

Ryan W. Bavis^{a,*}, Peter M. MacFarlane^b

^a Department of Biology, Bates College, Lewiston, ME 04240, USA

^b Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA

ARTICLE INFO

ABSTRACT

Article history: Received 22 February 2016 Received in revised form 13 May 2016 Accepted 26 May 2016 Available online 28 May 2016

Keywords: Phenotypic plasticity Neuroplasticity Developmental plasticity Critical window Critical period Control of breathing Ventilatory response Hypoxia Hyperoxia Hypercapnia The respiratory control system undergoes a diversity of morphological and physiological transformational stages during intrauterine development as it prepares to transition into an air-breathing lifestyle. Following birth, the respiratory system continues to develop and may pass through critical periods of heightened vulnerability to acute environmental stressors. Over a similar time course, however, the developing respiratory control system exhibits substantial capacity to undergo plasticity in response to chronic or repeated environmental stimuli. A hallmark of developmental plasticity is that it requires an interaction between a stimulus (e.g., hypoxia, hyperoxia, or psychosocial stress) and a unique window of development; the same stimulus experienced beyond the boundaries of this critical window of plasticity (e.g., at maturity), therefore, will have little if any appreciable effect on the phenotype. However, there are major gaps in our understanding of the mechanistic basis of developmental plasticity. Filling these gaps in our knowledge may be crucial to advancing our understanding of the developmental origin of adult health and disease. In this review, we: i) begin by clarifying some ambiguities in the definitions of plasticity and related terms that have arisen in recent years; ii) describe various levels of the respiratory control system where plasticity can (or has been identified to) occur; iii) emphasize the importance of understanding the mechanistic basis of developmental plasticity; iv) consider factors that influence whether developmental plasticity is permanent or whether function can be restored; v) discuss genetic and sex-based variation in the expression of developmental plasticity; and vi) provide a translational perspective to developmental plasticity.

© 2016 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	176
2.	What is (and isn't) plasticity?	178
3.	Developmental plasticity and critical windows	179
4.	Critical windows (or periods) of plasticity versus other forms of critical periods	180
5.	Developmental plasticity may occur at multiple levels of respiratory control system	181
6.	Mechanisms for long-lasting changes in respiratory control	182
7.	Restoring respiratory phenotypes after developmental plasticity: reversibility versus compensation	182
8.	Genetic variation and sex differences in developmental plasticity	184
9.	Translational relevance	186
10.	Concluding remarks	187
Refe	rences	187

1. Introduction

An individual's phenotype is the product of both its genotype and its environment or, in other words, the product of both its nature and its

E-mail address: rbavis@bates.edu (R.W. Bavis).

nurture. This is well illustrated by striking examples of morphological plasticity in invertebrates and other taxonomic groups (*e.g.*, Greene, 1999; Nijhout, 2003), but this concept is equally relevant to homeostatic control systems in humans and other mammals. Thus, while the respiratory control system develops under strong genetic regulation and respiratory phenotypes exhibit significant heritability (*e.g.*, Han and Strohl, 2000; Strohl, 2003; Tankersley, 2003; Borday et al., 2004, 2005; Carmelli et al., 2004; Bloch-Salisbury et al., 2010), the neural pathways

^{*} Corresponding author at: Department of Biology, Bates College, 44 Campus Ave., Carnegie Science Hall, Lewiston, ME 04240, USA.

Table 1

Examples of developmental plasticity of respiratory control in rats.

Environmental stimulus ^a	Developmental stage	Respiratory phenotype ^b	Potential mechanisms for observed respiratory phenotypes ^c	Selected references
Sustained hypoxia	Prenatal	NX: hyperpnea, persists several weeks but not into adulthood HVR: increased initially, blunted by 9 weeks of age HCVR: not studied	neurochemistry, e.g.: carotid body dopamine content reduced; brainstem (A1) noradrenaline reduced (at 3 weeks) then enhanced (at 9 weeks); CB and PG TH activity reduced (≤1 week) then enhanced (≥3	Peyronnet et al. (2000, 2007)
Sustained hypoxia	Postnatal	not into adulthood	weeks), but opposite pattern in brainstem catecholaminergic regions. Reduced glomus cell O ₂ sensitivity correlated with decreased K ⁺ channel expression and increased dopamine turnover; glomus cell O ₂ sensitivity recovers after re-exposure to normoxia; TH activity increased in CB and decreased in brainstem (high altitude)	Okubo and Mortola (1990); Hertzberg et al. (1992), Wyatt et al. (19950, Sterni et al. (1999), Joseph et al. (2000), Bavis et al. (2004), Mayer et al. (2014)
Intermittent hypoxia	Postnatal	NX: no change or hyperpnea depending on model; hyperpnea may persist several weeks after re-exposure to normoxia HVR: generally increased, but decreased or no change in some models HCVR: no change	Enhanced CB response to hypoxia.	Peng et al. (2004), Reeves and Gozal (2006a (2006b), Reeves et al. (2006), Julien et al. (2008), (2011), Pawar et al. (2008), Nandur et al. (2012)
Sustained hypoxia + intermittent hypoxia	Postnatal	NX: hyperpnea secondary to increased metabolic rate HVR: decreased HCVR: no change	Reduced CB O ₂ sensitivity; increased nTS neuron excitability.	Mayer et al. (2013), (2015)
hyporia Sustained hyperoxia	Postnatal	NX: hypopnea/hypoventilation, generally does not persist into adulthood HVR: initially increased (≤P7), then decreased through adulthood HCVR: no change	Decreased CB size (persists into adulthood); decreased glomus cell O ₂ sensitivity (recovers after re-exposure to normoxia), correlated with changes in K ⁺ channel mRNA expression; decreased whole-nerve CSN responses to hypoxia, likely due to CSN neuron degeneration; decreased neurotrophin expression in CB, PG, and nTS; neonatal brainstem exhibits slowed respiratory rhythm <i>in vitro</i> .	Ling et al. (1996), Erickson et al. (1998), Bisgard et al. (2003), Bavis et al. (2010), (2011b), (2014b), Dmitrieff et al. (2011), 2012, Chavez-Valdez et al. (2012), Bierman al. (2014a), (2014b)
Intermittent hyperoxia	Postnatal	NX: no change or hyperpnea depending on age, does not persist into adulthood HVR: initially increased (P4), then decreased (P14-P15); blunting may persist into adulthood depending on model HCVR: not studied	Decreased CB size (persists into adulthood); single-unit carotid chemoafferent nerve activity reduced under baseline conditions, but hypoxic response only reduced in the youngest age groups tested (<i>i.e.</i> , P4, not P13–P14).	Bavis et al. (2007), Logan et al. (2016)
Maternal separation stress	Postnatal	NX: increased in females only; increased apnea frequency and breath-to-breath variability in males HVR: decreased in females, increased in males; effects are not apparent in neonates (<i>i.e.</i> , emerge in adults) HCVR: increased in females, decreased in males	Females: no change in basal stress hormone levels; increased CB dopamine D ₂ receptor mRNA expression; increased estradiol during acute hypoxia, but no effect on progesterone Males: increased basal stress hormone levels; enhanced gain for central integration of CSN activity; altered balance between glutamatergic and GABAergic modulation in the nTS and/or PVN; increased BDNF expression in PVN; increased CB TH and dopamine D ₂ receptor mRNA expression; reduced Hering-Breuer reflex; increased testosterone during acute hypoxia, but no effect on estradiol or progesterone; greater expression of androgen receptors in the caudal nTS.	Genest et al. (2004), 2007, Dumont and Kinkead (2011), Gulemetova and Kinkead (2011), Gulemetova et al. (2013), Fournier of al. (2014), (2015), see also Behan and Kinkead (2011) and references therein.
Predator-induced stress	Prenatal	NX: increased frequency and severity of apneas, increased respiratory instability HVR: decreased HCVR: increased in females only	Decreased medullary 5-HT and NA concentrations at birth; neonatal brainstem exhibits slowed (males only) and more variable respiratory rhythm <i>in vitro</i> ; more sensitive to serotonergic modulation of respiratory stability <i>in vitro</i> and <i>in vivo</i> ; delayed maturation of GABAergic neuromodulation, potentially within peripheral nervous system or pons.	Fournier et al. (2013) Delhaes et al. (2014)
Caffeine	Postnatal	NX: no change (males and females) or hyperpnea (males), persists into adulthood HVR: altered pattern (increased frequency response) in adult males only HCVR: increased in young rats; as adults, change in pattern only (only in males) or decreased (males)	Females: increased CB adenosine A_{2A} receptor mRNA expression. Males: increased CB adenosine A_{2A} receptor, dopamine D_2 receptor, and TH mRNA expression; increased hypoxic frequency response blocked by A_{2A} receptor antagonist; HCVR less sensitive to adenosine A_1 receptor antagonist	Montandon et al. (2006), (2007), (2008), (2009)

Download English Version:

https://daneshyari.com/en/article/5629219

Download Persian Version:

https://daneshyari.com/article/5629219

Daneshyari.com